The Great East Japan Earthquake and tsunami on March 11, 2011, mark the start of the nuclear accident at the Fukushima Daiichi nuclear power plant. Progression of the accident has been analyzed with the SAMPSON code. SAMPSON was originally designed as a large-scale simulation system with the maximum use of mechanistic models and theoretically based equations. In the progression analysis done for Unit 2, SAMPSON could reproduce the pressure transient of the reactor pressure vessel (RPV) reasonably well by assuming partial load operation of the reactor core isolation cooling system (RCIC). The pressure transient of the primary containment vessel was reproduced reasonably well by assuming torus room flooding. After the RCIC trip and manual opening of the steam relief valve, SAMPSON predicted the damage to the upper part of the fuel assemblies near the core center and RPV failure due to creep rupture. More than 91 wt% of the core debris relocated to the lower plenum was as particles, and the major constituents were UO2, Zr, and ZrO2 by SAMPSON analysis.

Analysis of accident progression with the SAMPSON code in Fukushima Daiichi nuclear power plant unit 2

Pellegrini M.;
2014-01-01

Abstract

The Great East Japan Earthquake and tsunami on March 11, 2011, mark the start of the nuclear accident at the Fukushima Daiichi nuclear power plant. Progression of the accident has been analyzed with the SAMPSON code. SAMPSON was originally designed as a large-scale simulation system with the maximum use of mechanistic models and theoretically based equations. In the progression analysis done for Unit 2, SAMPSON could reproduce the pressure transient of the reactor pressure vessel (RPV) reasonably well by assuming partial load operation of the reactor core isolation cooling system (RCIC). The pressure transient of the primary containment vessel was reproduced reasonably well by assuming torus room flooding. After the RCIC trip and manual opening of the steam relief valve, SAMPSON predicted the damage to the upper part of the fuel assemblies near the core center and RPV failure due to creep rupture. More than 91 wt% of the core debris relocated to the lower plenum was as particles, and the major constituents were UO2, Zr, and ZrO2 by SAMPSON analysis.
2014
Fuel relocation
Mechanistic model
Severe nuclear accidents
File in questo prodotto:
File Dimensione Formato  
07_2014_SuzukiPellegrini_Analysis of Accident Progression with the SAMPSON Code in Fukushima Daiichi Nuclear Power Plant Unit 2.pdf

Accesso riservato

: Publisher’s version
Dimensione 1.36 MB
Formato Adobe PDF
1.36 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1292849
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact