This study presents an experimental investigation of the heat transfer and acoustic properties of semi-finished panels obtained from post-consumer textile waste. Their different compositions (mostly polyester, mostly cotton, and mixed fabric) and different densities, in a range from 50 to 150 kg/m3, were considered. The transient “hot disk” method was used for thermal conductivity and diffusivity measurements and a Kundt's tube for sound absorption. Moreover, hygroscopic characterizations of moisture absorption and its kinetics were carried out. Overall, good thermal insulation (thermal conductivity between 0.042 and 0.062 W/K/m) and medium acoustic performances (sound absorption classes C and D) were observed, suitable for building applications. Thermal conductivity was found to linearly increase with the density and to increase with the relative humidity, in line with the analysed hygroscopic behaviour of the porous matrix. On average, the polyester-based panels showed the lowest thermal conductivity, followed by the mixed fabric.

Hygro-Thermal and Acoustic performances of recycled textile-based materials for building applications

Dama, Alessandro;Khoshtinat, Shiva;Alongi, Andrea;Marano, Claudia;Angelotti, Adriana
2025-01-01

Abstract

This study presents an experimental investigation of the heat transfer and acoustic properties of semi-finished panels obtained from post-consumer textile waste. Their different compositions (mostly polyester, mostly cotton, and mixed fabric) and different densities, in a range from 50 to 150 kg/m3, were considered. The transient “hot disk” method was used for thermal conductivity and diffusivity measurements and a Kundt's tube for sound absorption. Moreover, hygroscopic characterizations of moisture absorption and its kinetics were carried out. Overall, good thermal insulation (thermal conductivity between 0.042 and 0.062 W/K/m) and medium acoustic performances (sound absorption classes C and D) were observed, suitable for building applications. Thermal conductivity was found to linearly increase with the density and to increase with the relative humidity, in line with the analysed hygroscopic behaviour of the porous matrix. On average, the polyester-based panels showed the lowest thermal conductivity, followed by the mixed fabric.
2025
Circular economy
Energy efficiency
Hot disk method
Moisture absorption
Sound absorption
Textile waste
Thermal conductivity
Thermal diffusivity
File in questo prodotto:
File Dimensione Formato  
Thermal-Hygrometric-Acustic_MateRia_2025_red.pdf

accesso aperto

Descrizione: article
: Publisher’s version
Dimensione 1.12 MB
Formato Adobe PDF
1.12 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1289671
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact