Low-temperature solar collectors coupled with thermal energy storage can enable stable and carbon-free energy production. The key issue is to efficiently convert solar energy into electricity without resorting to complex architecture that may hinder the technical and economic feasibility of the entire system. In this work, we propose a fully integrated organic Rankine cycle (ORC) with the solar field and energy storage, targeting 200 kW. The system consists of a single circuit of the selected organic fluid that passes through the solar collectors, the thermocline thermal energy storage, and the ORC unit. The organic fluid remains liquid inside the solar field and the thermal energy storage, leading to a trilateral thermodynamic cycle. Leveraging the thermodynamic behavior of molecularly complex fluids, the radial-inflow turbine expands from saturated liquid to superheated vapor. Following the idea of White (App. Therm. Eng., 192 (2021), 116852), the nozzle cascade expands the two-phase flow mixtures and delivers superheated vapor to the rotating cascade. In this way, the rotor processes dry organic vapors without incurring mechanical damage or suffering from additional losses due to two-phase interactions. Three maximum temperatures are investigated, and each of them entails a different fluid selection to have the liquid-to-vapor expansion through the stator. Preliminary designs of the radial-inflow turbines are carried out by employing a meanline code, validated for single-phase organic-fluid flows, revealing that feasible designs can be obtained. Based on these results, the proposed technology appears feasible and promising on the technical ground.

Assessment of trilateral organic Rankine cycle for solar applications with innovative turboexpander concept

Alessandro Romei;Andrea Giostri;Andrea Spinelli
2024-01-01

Abstract

Low-temperature solar collectors coupled with thermal energy storage can enable stable and carbon-free energy production. The key issue is to efficiently convert solar energy into electricity without resorting to complex architecture that may hinder the technical and economic feasibility of the entire system. In this work, we propose a fully integrated organic Rankine cycle (ORC) with the solar field and energy storage, targeting 200 kW. The system consists of a single circuit of the selected organic fluid that passes through the solar collectors, the thermocline thermal energy storage, and the ORC unit. The organic fluid remains liquid inside the solar field and the thermal energy storage, leading to a trilateral thermodynamic cycle. Leveraging the thermodynamic behavior of molecularly complex fluids, the radial-inflow turbine expands from saturated liquid to superheated vapor. Following the idea of White (App. Therm. Eng., 192 (2021), 116852), the nozzle cascade expands the two-phase flow mixtures and delivers superheated vapor to the rotating cascade. In this way, the rotor processes dry organic vapors without incurring mechanical damage or suffering from additional losses due to two-phase interactions. Three maximum temperatures are investigated, and each of them entails a different fluid selection to have the liquid-to-vapor expansion through the stator. Preliminary designs of the radial-inflow turbines are carried out by employing a meanline code, validated for single-phase organic-fluid flows, revealing that feasible designs can be obtained. Based on these results, the proposed technology appears feasible and promising on the technical ground.
2024
Proceedings of the 7th International Seminar on ORC Power Systems
978-84-472-2745-7
File in questo prodotto:
File Dimensione Formato  
C13 - ORC_TORC.pdf

accesso aperto

: Publisher’s version
Dimensione 757.86 kB
Formato Adobe PDF
757.86 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1288214
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact