In the realm of excavator control, advanced techniques, such as Model Predictive Control (MPC) and two-degrees-of-freedom structures (feedforward plus feedback), proved to have great potential for enhancing efficiency and performance. These methods rely on the knowledge of future reference, which is often pre-defined, to optimize the system behavior as a function of it. However, this assumption fails in applications where a human operator chooses the reference at runtime, such as in the case of non-autonomous digging operations. To cope with this problem, we study different approaches to use the collected data of human-generated reference signals to learn a predictive model of the operator commands. The considered methods are function approximation techniques based on Kriging, Set-Membership, and LSTM Neural Networks. We summarize the principles and the implementation of each method, and compare their performance using an experimental data-set of operations from a real-world excavator, where four operator-defined reference signals are predicted.

Real-time prediction of human-generated reference signals for advanced digging control*

Cecchin, Leonardo;Fagiano, Lorenzo;
2024-01-01

Abstract

In the realm of excavator control, advanced techniques, such as Model Predictive Control (MPC) and two-degrees-of-freedom structures (feedforward plus feedback), proved to have great potential for enhancing efficiency and performance. These methods rely on the knowledge of future reference, which is often pre-defined, to optimize the system behavior as a function of it. However, this assumption fails in applications where a human operator chooses the reference at runtime, such as in the case of non-autonomous digging operations. To cope with this problem, we study different approaches to use the collected data of human-generated reference signals to learn a predictive model of the operator commands. The considered methods are function approximation techniques based on Kriging, Set-Membership, and LSTM Neural Networks. We summarize the principles and the implementation of each method, and compare their performance using an experimental data-set of operations from a real-world excavator, where four operator-defined reference signals are predicted.
2024
IEEE International Conference on Automation Science and Engineering
File in questo prodotto:
File Dimensione Formato  
2024.CASE_Cecchin et al learning references excavator.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 739.8 kB
Formato Adobe PDF
739.8 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1287526
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact