An optimal trajectory planning approach for hydraulic excavator arms is presented, where the goal is to create trajectories that trade-off energy consumption and completion time. We develop a physics-based model of the excavator, which describes both the dynamics and the hydraulic system's behavior. Further investigation of the Optimal Control Problem, used to create the trajectory, allows for discussion regarding the trade-off between power and time recovering a wide range of solutions based on the designer's choice. Lastly, the problem is extended to include obstacle-avoidance constraints, creating a collision-free and efficient path.
Energy-Optimal Trajectory Planning for Semi-Autonomous Hydraulic Excavators
Cecchin, Leonardo;Fagiano, Lorenzo
2024-01-01
Abstract
An optimal trajectory planning approach for hydraulic excavator arms is presented, where the goal is to create trajectories that trade-off energy consumption and completion time. We develop a physics-based model of the excavator, which describes both the dynamics and the hydraulic system's behavior. Further investigation of the Optimal Control Problem, used to create the trajectory, allows for discussion regarding the trade-off between power and time recovering a wide range of solutions based on the designer's choice. Lastly, the problem is extended to include obstacle-avoidance constraints, creating a collision-free and efficient path.| File | Dimensione | Formato | |
|---|---|---|---|
|
2024.MED_Leonesio et al optimization random forest.pdf
accesso aperto
Dimensione
1.66 MB
Formato
Adobe PDF
|
1.66 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


