The booming development of emerging technologies and their integration in process planning provide new opportunities for solving the problems in traditional trial-and-error process planning. Combining digital twin with 3D computer vision, this paper defines a novel feature-level digital twin process model (FL-DTPM) by extracting machining features from model-based definition models. Firstly, a multi-dimensional FL-DTPM framework is defined by fusing on-site data, quality information, and process knowledge, where the synergistic mechanism of its virtual and physical processes is revealed. Then, 3D computer vision-enabled machining features extraction method is embedded into the FL-DTPM framework to support the reuse of process knowledge, which involves the procedures of data pre-processing, semantic segmentation, and instance segmentation. Finally, the effectiveness of the proposed features extraction method is verified and the application of FL-DTPM in machining process is presented. Oriented to the impeller process planning, a prototype of FL-DTPM is constructed to explore the potential application scenarios of the proposed method in intelligent process planning, which could provide insights into the industrial implementation of FL-DTPM for aerospace manufacturing enterprises.
Defining a feature-level digital twin process model by extracting machining features from MBD models for intelligent process planning
Matta, Andrea
2025-01-01
Abstract
The booming development of emerging technologies and their integration in process planning provide new opportunities for solving the problems in traditional trial-and-error process planning. Combining digital twin with 3D computer vision, this paper defines a novel feature-level digital twin process model (FL-DTPM) by extracting machining features from model-based definition models. Firstly, a multi-dimensional FL-DTPM framework is defined by fusing on-site data, quality information, and process knowledge, where the synergistic mechanism of its virtual and physical processes is revealed. Then, 3D computer vision-enabled machining features extraction method is embedded into the FL-DTPM framework to support the reuse of process knowledge, which involves the procedures of data pre-processing, semantic segmentation, and instance segmentation. Finally, the effectiveness of the proposed features extraction method is verified and the application of FL-DTPM in machining process is presented. Oriented to the impeller process planning, a prototype of FL-DTPM is constructed to explore the potential application scenarios of the proposed method in intelligent process planning, which could provide insights into the industrial implementation of FL-DTPM for aerospace manufacturing enterprises.| File | Dimensione | Formato | |
|---|---|---|---|
|
Defining a feature-level digital twin process model by extracting machining features from MBD models for intelligent process planning.pdf
Accesso riservato
:
Publisher’s version
Dimensione
5.47 MB
Formato
Adobe PDF
|
5.47 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


