The rapid expansion of telecommunications infrastructure, driven by the deployment of the 5G network, necessitates innovative engineering solutions to ensure the reliability and stability of these critical structures. Steel trellis pylons, designed for hosting several telecommunication antennas, are particularly susceptible to wind-induced vibrations due to their slender profiles, high equivalent area exposed to wind loads and low structural damping. Such vibrations can lead to structural deterioration, signal disturbance, and, in severe cases, total structural failure. In this context, the need for effective vibration control measures is becoming more and more relevant. This paper underscores the complex challenge of wind-induced vibrations in telecommunications pylons and the promising potential of AMD systems as a mitigation strategy. This study aims at advancing the state of the art by integrating experimental wind load measurements, modal analysis, and the application of AMD technology to a 50-meter-high steel trellis pylon. Through comprehensive analysis and numerical simulation, the effectiveness of AMD systems in enhancing structural performance and resilience under wind loading conditions is validated.
STUDY OF A TRELLIS PYLON VIBRATIONS INDUCED BY WIND LOADS AND CONTROLLED TRHOUGH AN AMD
Ripamonti F.;
2024-01-01
Abstract
The rapid expansion of telecommunications infrastructure, driven by the deployment of the 5G network, necessitates innovative engineering solutions to ensure the reliability and stability of these critical structures. Steel trellis pylons, designed for hosting several telecommunication antennas, are particularly susceptible to wind-induced vibrations due to their slender profiles, high equivalent area exposed to wind loads and low structural damping. Such vibrations can lead to structural deterioration, signal disturbance, and, in severe cases, total structural failure. In this context, the need for effective vibration control measures is becoming more and more relevant. This paper underscores the complex challenge of wind-induced vibrations in telecommunications pylons and the promising potential of AMD systems as a mitigation strategy. This study aims at advancing the state of the art by integrating experimental wind load measurements, modal analysis, and the application of AMD technology to a 50-meter-high steel trellis pylon. Through comprehensive analysis and numerical simulation, the effectiveness of AMD systems in enhancing structural performance and resilience under wind loading conditions is validated.File | Dimensione | Formato | |
---|---|---|---|
W240582_1006_JBRZ.pdf
Accesso riservato
:
Publisher’s version
Dimensione
1.2 MB
Formato
Adobe PDF
|
1.2 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.