The rapid expansion of telecommunications infrastructure, driven by the deployment of the 5G network, necessitates innovative engineering solutions to ensure the reliability and stability of these critical structures. Steel trellis pylons, designed for hosting several telecommunication antennas, are particularly susceptible to wind-induced vibrations due to their slender profiles, high equivalent area exposed to wind loads and low structural damping. Such vibrations can lead to structural deterioration, signal disturbance, and, in severe cases, total structural failure. In this context, the need for effective vibration control measures is becoming more and more relevant. This paper underscores the complex challenge of wind-induced vibrations in telecommunications pylons and the promising potential of AMD systems as a mitigation strategy. This study aims at advancing the state of the art by integrating experimental wind load measurements, modal analysis, and the application of AMD technology to a 50-meter-high steel trellis pylon. Through comprehensive analysis and numerical simulation, the effectiveness of AMD systems in enhancing structural performance and resilience under wind loading conditions is validated.

STUDY OF A TRELLIS PYLON VIBRATIONS INDUCED BY WIND LOADS AND CONTROLLED TRHOUGH AN AMD

Ripamonti F.;
2024-01-01

Abstract

The rapid expansion of telecommunications infrastructure, driven by the deployment of the 5G network, necessitates innovative engineering solutions to ensure the reliability and stability of these critical structures. Steel trellis pylons, designed for hosting several telecommunication antennas, are particularly susceptible to wind-induced vibrations due to their slender profiles, high equivalent area exposed to wind loads and low structural damping. Such vibrations can lead to structural deterioration, signal disturbance, and, in severe cases, total structural failure. In this context, the need for effective vibration control measures is becoming more and more relevant. This paper underscores the complex challenge of wind-induced vibrations in telecommunications pylons and the promising potential of AMD systems as a mitigation strategy. This study aims at advancing the state of the art by integrating experimental wind load measurements, modal analysis, and the application of AMD technology to a 50-meter-high steel trellis pylon. Through comprehensive analysis and numerical simulation, the effectiveness of AMD systems in enhancing structural performance and resilience under wind loading conditions is validated.
2024
World Congress in Computational Mechanics and ECCOMAS Congress
Active Mass Damper (AMD)
Steel Structures
Structural Stability
Vibration Control
Wind loads
File in questo prodotto:
File Dimensione Formato  
W240582_1006_JBRZ.pdf

Accesso riservato

: Publisher’s version
Dimensione 1.2 MB
Formato Adobe PDF
1.2 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1286462
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact