Light fields can sculpt the optical and electronic properties of solids by injecting charge carriers from the valence to the conduction band. The photoinjection process typically unfolds on time scales shorter than the period of the driving radiation, thus being - for visible and near-infrared light - below one femtosecond. Despite being pervasive, only a few experiments investigated the photoinduced charge excitation produced by an intense, ultrashort laser pulse with attosecond temporal resolution. Here we used attosecond transient reflection spectroscopy in combination with a two-fold, advanced theoretical approach to demonstrate that there is not a single photoexcitation mechanism responsible for charge injection in germanium. Instead, it stems from multi-photon absorption and band dressing, while intra-band motion has a hindering effect.

Photoexcitation in germanium probed by attosecond transient reflectivity spectroscopy

Inzani, Giacomo;Di Palo, Nicola;Dolso, Gian Luca;Moio, Bruno;Nisoli, Mauro;Lucchini, Matteo
2024-01-01

Abstract

Light fields can sculpt the optical and electronic properties of solids by injecting charge carriers from the valence to the conduction band. The photoinjection process typically unfolds on time scales shorter than the period of the driving radiation, thus being - for visible and near-infrared light - below one femtosecond. Despite being pervasive, only a few experiments investigated the photoinduced charge excitation produced by an intense, ultrashort laser pulse with attosecond temporal resolution. Here we used attosecond transient reflection spectroscopy in combination with a two-fold, advanced theoretical approach to demonstrate that there is not a single photoexcitation mechanism responsible for charge injection in germanium. Instead, it stems from multi-photon absorption and band dressing, while intra-band motion has a hindering effect.
2024
Attosecond science
attosecond transient reflectivity spectroscopy
ultrafast electron dynamics
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1286455
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact