We study scattering for the couple (AF,A0) of Schrödinger operators in L2(R3) formally defined as A0=−Δ+αδπjavax.xml.bind.JAXBElement@69b32f3e and AF=−Δ+αδπjavax.xml.bind.JAXBElement@45bf6b2b, α>0, where δπjavax.xml.bind.JAXBElement@656a861f is the Dirac δ-distribution supported on the deformed plane given by the graph of the compactly supported, Lipschitz continuous function F:R2→R and π0 is the undeformed plane corresponding to the choice F≡0. We provide a Limiting Absorption Principle, show asymptotic completeness of the wave operators and give a representation formula for the corresponding Scattering Matrix SF(λ). Moreover we show that, as F→0, ‖SF(λ)−1‖B(Ljavax.xml.bind.JAXBElement@7b000395(Sjavax.xml.bind.JAXBElement@bba1914))2=O(∫Rjavax.xml.bind.JAXBElement@3562cd7bdx|F(x)|γ), 0<γ<1.

Scattering from local deformations of a semitransparent plane

Fermi, Davide;Posilicano, Andrea
2019-01-01

Abstract

We study scattering for the couple (AF,A0) of Schrödinger operators in L2(R3) formally defined as A0=−Δ+αδπjavax.xml.bind.JAXBElement@69b32f3e and AF=−Δ+αδπjavax.xml.bind.JAXBElement@45bf6b2b, α>0, where δπjavax.xml.bind.JAXBElement@656a861f is the Dirac δ-distribution supported on the deformed plane given by the graph of the compactly supported, Lipschitz continuous function F:R2→R and π0 is the undeformed plane corresponding to the choice F≡0. We provide a Limiting Absorption Principle, show asymptotic completeness of the wave operators and give a representation formula for the corresponding Scattering Matrix SF(λ). Moreover we show that, as F→0, ‖SF(λ)−1‖B(Ljavax.xml.bind.JAXBElement@7b000395(Sjavax.xml.bind.JAXBElement@bba1914))2=O(∫Rjavax.xml.bind.JAXBElement@3562cd7bdx|F(x)|γ), 0<γ<1.
2019
Kreĭn's resolvent formulae
Point interactions supported by unbounded hypersurfaces
Scattering theory
File in questo prodotto:
File Dimensione Formato  
9 - Scattering from local deformations of a semitransparent plane.pdf

accesso aperto

: Publisher’s version
Dimensione 803.62 kB
Formato Adobe PDF
803.62 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1281873
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 1
social impact