We consider gravity compactifications whose internal space consists of small bridges connecting larger manifolds, possibly noncompact. We prove that, under rather general assumptions, this leads to a massive spin-two field with very small mass. The argument involves a recently-noticed relation to Bakry-Émery geometry, a version of the so-called Cheeger constant, and the theory of synthetic Ricci lower bounds. The latter technique allows generalizations to non-smooth spaces such as those with D-brane singularities. For AdSd vacua with a bridge admitting an AdSd+1 interpretation, the holographic dual is a CFTd with two CFTd−1 boundaries. The ratio of their degrees of freedom gives the graviton mass, generalizing results obtained by Bachas and Lavdas for d = 4. We also prove new bounds on the higher eigenvalues. These are in agreement with the spin-two swampland conjecture in the regime where the background is scale-separated; in the opposite regime we provide examples where they are in naive tension with it.

Cheeger bounds on spin-two fields

De Ponti N.;Mondino A.;
2021-01-01

Abstract

We consider gravity compactifications whose internal space consists of small bridges connecting larger manifolds, possibly noncompact. We prove that, under rather general assumptions, this leads to a massive spin-two field with very small mass. The argument involves a recently-noticed relation to Bakry-Émery geometry, a version of the so-called Cheeger constant, and the theory of synthetic Ricci lower bounds. The latter technique allows generalizations to non-smooth spaces such as those with D-brane singularities. For AdSd vacua with a bridge admitting an AdSd+1 interpretation, the holographic dual is a CFTd with two CFTd−1 boundaries. The ratio of their degrees of freedom gives the graviton mass, generalizing results obtained by Bachas and Lavdas for d = 4. We also prove new bounds on the higher eigenvalues. These are in agreement with the spin-two swampland conjecture in the regime where the background is scale-separated; in the opposite regime we provide examples where they are in naive tension with it.
2021
Differential and Algebraic Geometry
p-branes
Spacetime Singularities
Superstring Vacua
File in questo prodotto:
File Dimensione Formato  
De Luca, De Ponti, Mondino, Tomasiello - Cheeger bounds on spin-two fields.pdf

accesso aperto

: Publisher’s version
Dimensione 2.32 MB
Formato Adobe PDF
2.32 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1280431
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact