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ABSTRACT: We consider gravity compactifications whose internal space consists of small
bridges connecting larger manifolds, possibly noncompact. We prove that, under rather
general assumptions, this leads to a massive spin-two field with very small mass. The
argument involves a recently-noticed relation to Bakry-Emery geometry, a version of the
so-called Cheeger constant, and the theory of synthetic Ricci lower bounds. The latter
technique allows generalizations to non-smooth spaces such as those with D-brane singu-
larities. For AdS, vacua with a bridge admitting an AdS4.1 interpretation, the holographic
dual is a CFT; with two CFTy4_; boundaries. The ratio of their degrees of freedom gives
the graviton mass, generalizing results obtained by Bachas and Lavdas for d = 4. We
also prove new bounds on the higher eigenvalues. These are in agreement with the spin-
two swampland conjecture in the regime where the background is scale-separated; in the
opposite regime we provide examples where they are in naive tension with it.
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1 Introduction

In a gravity compactification, the Kaluza-Klein (KK) spectrum of particles depends on the
size and shape of the internal space M,, (n denoting its dimension). In a recent paper [1]
two of the present authors studied this relation for spin-two fields, whose masses are set by
a relatively simple second-order operator on M,, [2, 3]. Using recent mathematical results
on Bakry-Emery geometry we established general bounds in terms of the diameter of M,
or on the average of the warping function on it.



(a) (b)

Figure 1. An almost split internal space, (a) compact and (b) non-compact.

The bounds in [1] were especially useful to quantify to what extent one can achieve
scale separation mgk > /|A|. In this paper, we focus on the opposite regime: we look at
compactifications with spin-two fields of very small mass mj. This has several interesting
applications, which we will review shortly.

We will see that this is achieved for example when M,, is almost split in two large
regions, connected by a smaller “bridge” (figure 1a; more generally one may consider several
large regions and bridges). This is inspired by a remarkable set of explicit examples in 1IB
string theory [4, 5], where it was interpreted as a “quantum gate”, a sort of wormhole
extended all along d-dimensional spacetime. Intuitively it is clear that such configurations
should indeed lead to a small mass. Formally, the problem with two disconnected internal
spaces M, 1 M2

=, would lead to two massless gravitons gll“,, gfw; the bridge can be viewed

as a small perturbation on this factorized problem, which then gives a small mass m; to
one combination of the gy, leaving the other massless.

More precisely, our statement is the following. We consider gravity theories in D
spacetime dimensions satisfying what was called Reduced Energy Condition (REC) in [1].
This is the case in particular for the bulk fields in the supergravity approximation to string
theory. (Localized objects can be problematic, but as we will see NS5-branes and some
D-branes can be included; O-planes might also be included with some further future work.)
In [1] it was shown that the REC implies a bound on the internal R, — (D — 2)V,,0, 4,
where the warping A and the bar are defined by ds?, = e?4(ds2 + d52). Here we use a
result by two of the present authors [6] to obtain

1 21 22

(M) < m? < max {mhl(Mn)\/E, 5h1(Mn)2} (L.1)
where K = |A| + D”—EQ, and o is defined as the supremum of the gradient of the warping,
ie. (D —2)|dA| < o as in [1]; and
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where ggp is the determinant of the pull-back metric to the boundary region 0B of g, and

hi(M,) = infp (1.2)

B varies among all the open sets in M,, with smooth boundary, such that the denominator



is smaller than % S, V3 eP=2A qny. This is a variant of the classical Cheeger constant, to
which it reduces for A = 0. Sometimes, the large regions and the bridge have holographic
interpretations as separate CFT;_; and CFT; models; in such cases, h; is precisely the
ratio of their free energy coefficients Fo(CFTy)/Fo(CFT4_1), a measure of their degrees of
freedom.

Figure 1la illustrates a case where hi is small, with the understanding that the size
shown in the figure is according to the measure weighted by e®~2)4. The bound (1.1) is
always valid, but is most interesting for our physics application when hy < mp, the Planck
mass in D dimensions.

Besides (1.1), we also consider bounds on the higher eigenvalues. For this, we consider
a generalization of (1.2) involving a min-max of several Borel sets. Results of this kind
were available in the Riemannian (A = 0) case, but we generalize them to the A # 0
and non-smooth case, proving new theorems analogous to (1.1). In particular, as long as
the lightest mass m? > K, we prove that the higher eigenvalues are bounded above by

2 2816 7.2
mi < BIop

m?; in other words, making m; small drags down all the higher eigenvalues
myg. This is in agreement with the spin-two swampland conjecture of [7]. In such a regime,
m% > |A], the so-called separation of scales; this is the context where the conjecture was
originally meant to apply. In the regime where m? < |A[, the emergence of a whole
tower of light spin-two fields is also predicted by the massive-AdS-graviton conjecture [8,
section 4.1]. Here we can use our results to provide examples where such a tower cannot
originate from KK states; interestingly, another tower may originate from wrapped branes
and save the conjecture (although we will not investigate this in the present paper).

In the particular case where [, VgelP=2Ad"z is infinite, the d-dimensional Planck
mass my is infinite, and the massless graviton is non-dynamical; one is left with a single
massive “graviton”, whose mass m; is still constrained by (1.1); when h; is small as in
figure 1b, my is forced to be small too. Such a situation is interesting because it might be
hard to tell apart experimentally from standard Einstein gravity in many respects. For this
reason this scenario has been pursued energetically for a long time; see [9, 10] for reviews.
Since we work in supergravity, the usual no-go arguments force us to focus on the AdS
case; here massive gravity is both easier conceptually and of course less relevant to the real
world, but the realization of small graviton mass in a UV complete theory is likely to be
useful for further research.

In the afore-mentioned set of IIB examples, the lightest mass was computed in [4, 5];
in our language this is m? ~ %hl. This agrees with our general bound (1.1); it is of course
more precise, but our result is applicable more widely and requires almost no computation.
Other famous examples of almost-split spaces can be obtained from the Maldacena-Nunez
class [11] of solutions that include Riemann surfaces, going near the boundary of their
moduli space.

To arrive at (1.1), as we mentioned we use a lower bound on R, — (D —2)V,,0, A that
was found in [1]. As pointed out there, this bound is naturally interpreted in the context
of so-called Bakry-Emery geometry [12], which in turn implied bounds on all the spin-two
masses my, in terms of | M, \/ﬁe(D_Q)A d"x and on the diameter of M,,. The theorems

that we are using for (1.1), and the new ones we will prove here, were shown instead



using the more general perspective of RCD spaces, which satisfy the so-called Riemannian-
Curvature-Dimension condition. These are part of the theory of synthetic Ricci lower
bounds, which emerged recently from the encounter of ideas from optimal transport and
differential geometry — see for example [13, 14] for an introduction. The word “synthetic”
signals that this version allows for some singularities; we will show here that some brane
singularities are of RCD type, with a more complete treatment deferred to [15].

We begin in section 2 by recalling some results from [1], by reviewing why singularities
are useful in string theory, and with a quick review of the mathematical ideas we will need.
In section 3 we will show that some D-brane singularities satisfy the RCD condition, thus
including them in the framework of our general bounds. In section 4 we obtain our general
bounds on the KK masses, including (1.2). Sections 5 and 6 are devoted to the two sets of
examples we mentioned.

2 Background

2.1 Ricci lower bounds and Bakry-Emery geometry

We begin here with a quick review of the relevant results from [1, section 2].
We consider a D-dimensional gravity theory with an Einstein-Hilbert term, with Planck

mass mp and Newton’s constant x2 = (27)" _3m2D7D . The Einstein equations are
1 A 2 0Smat
Run = =k> [ Tun — =Tun, TyN = ———— — 2.1
MN = K ( MN QMND_2> MN MN N AT (2.1)
Compactification vacua have the metric
ds?) = e?Ads? + ds? := e?A(ds3 + cfsi) , (2.2)

where dsfl is a maximally symmetric space in d dimensions, and A is the warping function,
depending on the internal space M,,.
Suppose now the stress-energy tensor satisfies the Reduced Energy Condition (REC)

1
D) gmngT(d) >0. (2.3)
This energy condition is satisfied for all form fields Fjs, . a7, with Lagrangian density
proportional to —%F My M F M. My .— —F,?, and in particular also for massless scalars.
So it holds for the supergravity approximation to string theory, in D = 10 and 11. The
REC (2.3) implies that the internal Ricci tensor obeys the bound

B o 2
Rmn - (D - Q)vanA Z - (|A‘ + DU_ 2) gmn (2'4)

Notice that (2.4) is strictly related with a lower bound on the so-called Bakry-Emery
Ricci tensor for weighted Riemannian manifolds. Let us quickly recall the relevant defini-
tions, adopting a notation that will be congenial for some of the next sections. Let (M, g) be
an n-dimensional Riemannian manifold endowed with a weighted measure dm := ef dvolg,



where dvolg = ,/gd"x denotes the standard Riemannian volume measure on (M,g). (Some-
times we will also use the notation dvol, for dvolg, and their non-barred counterparts.) The
co-Bakry-Emery Ricci tensor Ric™/ (also called more simply Bakry-Emery Ricci tensor
and denoted as Ric/) of the weighted Riemannian manifold (M, g, e/ dvolg) is defined as

Ric2®/ (v,v) = Ric/ (v, v) := Ric,(v,v) — Hessf,(v,v), for all v € T, M, (2.5)

where Ric denotes the standard Ricci tensor of (M, g). The components of Ric/ are exactly
the left-hand side of (2.4), for
f=(D-2)A. (2.6)

There is also a refinement called IV —Bakry—Emery Ricci tensor, for N € (n,00), defined as

1
RicY/ (v,v) := Ricy(v,v) — {Hessf + Nidf ® df] (v,v), it N >n. (2.7)
—n N
The KK tower for spin-two operators is particularly simple: it is described in general [2,
3] by eigenfunctions vy, Ay = m%z/zk,l of the Bakry-Emery Laplacian (also known as
Witten Laplacian)

As() = ——=e~10, (\/gg™" e Ouv) = Ay — V- dps. (2.8)

Various results have been proven in the mathematical literature about the my, under the
assumption that (2.4) holds. Translating these in physics terms gives some general bounds
on the KK spectrum, which in particular put some constraints on scale separation, while
not disallowing it. In what follows we will describe another similar bound, this time on the
first non-zero eigenvalue m;. This bound was found however with the help of some more
sophisticated mathematics, to which we now turn.

2.2 The RCD condition and D-branes

The bound we need has been proven by considering Bakry-Emery manifolds as particular
cases of a more general type of spaces, the so-called RCD(K, N) spaces. This class has been
introduced in [16] (see also [17-21]) as a refinement of the class of CD(K, N) spaces defined
and studied previously in [22-24]. We will provide in section 2.3 the formal mathematical
definition of these classes, here we limit ourselves to mentioning that a CD(K, N) space is a
space X endowed with a distance function d and a measure m satisfying a synthetic notion
of Ricci curvature bounded from below and dimension bounded from above. The name CD
stands indeed for Curvature Dimension and the constant K € R plays the role of the lower
bound on the Ricci curvature, while N € (1, 0o] is the upper bound on the dimension. The
added letter R in RCD stands for Riemannian, since the main difference with respect to the

!Notice that in warped compactifications there is an ambiguity in defining the warping and the cosmo-

logical constant independently, which reverberates in the mathematical expressions for the masses. This

—24 —24¢ ~
%gd, gn — € Ogn.

This shift rescales the my, just defined, but does not affect the physical quantities, as they can be expressed

can be understood by noticing that (2.2) is invariant under A — A + Ag, ga — €

as ratio of masses (such as my/mp1 or mi/my) and thus do not rescale.



CD condition is the exclusion of Finsler-like structures? by further requiring the so-called
infinitesimally Hilbertianity of the space (see definition 2.1 for all the details).

One advantage of the RCD perspective that we are going to adopt is that it can also
include some singularities, still offering sufficiently powerful analysis tools. We stress the
fact that the space X may not be a smooth Riemannian manifold, and the distance d and
the measure m are not coming in general from a Riemannian metric g. Indeed, besides the
smooth examples of weighted Riemannian manifolds with Bakry-Emery Ricci curvature
bounded below by K [22, 23], important classes of RCD(K, N) spaces include suitable
limits of Riemannian manifolds with Ricci curvature bounded below (the so-called Ricci
limits) [16, 25-28], finite dimensional Alexandrov spaces [29], suitable stratified spaces [30],
appropriate quotients of Riemannian manifolds with Ricci bounded below [31].

The synthetic notion of Ricci curvature lower bound and dimension upper bound are
encoded in the definition of a CD(K, N) space by imposing some convexity properties to
suitable entropic functionals in the space of probability measures over X, taking advantage
of the theory of optimal transport. A crucial fact, at the basis of the theory, is that
these convexity properties are actually equivalent for a smooth Riemannian manifold to
imposing that the standard Ricci curvature is > K and the dimension of the manifold is
< N. Moreover, thanks to an impressive amount of work which is practically impossible to
summarize here (we refer the interested reader to the survey paper [14]), it has been shown
that this definition together with the infinitesimally Hilbertianity is powerful enough to
allow the study of important objects like the Laplacian and its eigenvalues, as well as to
develop a first and second order calculus on these spaces and prove various functional and
geometrical inequalities.

The possibility to work with some non-smooth spaces is very useful for string theory,
since many important compactifications have singularities induced by the back-reaction of
extended objects. We review here the ones associated to D and M-branes, leaving a more
general study for future work [15].

In the supergravity approximation, Dp-branes are seen as localized objects that source
gravitational and higher-form electromagnetic fields. As for black holes in pure General
Relativity or electrons in classical electrodynamics, the presence of a localized object pro-
duces a singularity in the classical fields it sources. These singularities are expected to
be resolved in the full quantum theory, but are a general feature of classical limits. In
ten-dimensional supergravities, Dp-branes are identified by a ten-dimensional metric that,
in Einstein frame, asymptotes to

dS%O ~ H% (d$§+1 + H(dr2 + r2ds§8,p)) forr = 0. (2.9)

Here da:lz, 1 denotes the p + 1 dimensional space parallel to the brane, (i.e. the subspace
along which the object is extended for » — 0) and r is a radial coordinate in the transverse
directions to the object. The function H is harmonic on the transverse space and it is
responsible for introducing the singularity we are concerned about. In vacuum compact-
ifications, a Dp-brane has to be extended along all the d vacuum directions in order to

2A Finsler manifold has a norm on tangent spaces that is not necessarily induced by an inner product,
i.e. not necessarily quadratic.



preserve maximal symmetry, but in addition it can also extend among some of the internal
directions. From (2.9), we obtain that the barred metric (2.2) approaches

d_si ~ dmiH,d + H(dr? + r?dss_,) forr — 0. (2.10)
Comparing with (2.2), we also read that the Bakry-Emery function f asymptotes to
of =84~ H'T forr — 0. (2.11)
Locally, the harmonic function behaves as

. { (rJro)P~T l<p<T

forr — 0, (2.12)
—z—jlog(r/ro) p="T

where Tg_p = gs(27ls)""P/((7 — p)Vol(S¥~P)) for p < 7. To analyze how these singularities
affect the general results presented in section 2.1, we first notice that in some cases the
gradient of the warping factor can be unbounded approaching the brane. Indeed, an explicit
computation in the geometry (2.10) gives

s (T=p (P

‘@f|2 =g" 0. forf = H_l(arf) 4 H3

(2.13)

This vanishes for p = 7 (since the warping approaches a constant) behaving in general as

IVF|2 ~ (7;17)41"5—11. (2.14)
(2.14) is always bounded, except for D6 branes. Thus, the bound on Ric/ in (2.4) becomes
then trivial approaching a D6-brane, since a diverging |V f|? results in an infinite o2
However, for D6-branes we can check explicitly that Ric™/ is still bounded from below
approaching the singularity, for any N > n, arguing as follows.
For general p, an explicit computation in the geometry (2.10), with f given by (2.11),
results in

Grr H3

icN»f rr - -p)° ')?
(RIS )rr _ ((p 4 5) 4((7N p)n)> (H') (2.15)

(Ric" g0, (Ric)gg, 1 (H')?

= = 2.16
90,0, 90:0, 2 H3 (2.16)
The local behaviors (2.12) then imply
H')? T—p)PriTP 1<p<7
(H3) ~ { ( ]1) b forr =0, (2.17)
~ rZlog(r)3 p="7

from which we see that in all cases all the components of Ric™/ are bounded from below
by some K = K(N,n) > —oo, for every N € (n, o0].

Finally we are left with the somewhat special case of a D8-brane. The singularity
introduced by this source is milder: the warping and the metric functions remain finite,



RicM/ > K(n,N) > —co | ¢? | distance
0<p<d v fin. 0
p==©6 v 00 fin.
p=717,8 v fin. fin.
M2/M5 v fin. 00

Table 1. Geometrical quantities in the transverse space for Dp-branes and M-branes. Note N €
(n,00]. As a consequence of S-duality, F1s and NS5s behave as D1 and D5 branes respectively.

with only a finite discontinuity in their first derivatives. More precisely, approaching a
D8 brane at 7 = 0 the harmonic function now behaves H ~ 1 — hg|r|, with hg a positive
constant. Near this object the barred metric then approaches as% ~ dasg gt H dr?
and the warping is given by e/ ~ H/2. In such a space both ¢ and the distance from the
singularity are finite, and thus the general bound (2.4) guarantees that Ric/ is bounded from
below. This can also be checked directly: an explicit computation gives a Ric/ ~ h + hsdo
which is bounded from below in the distributional sense. We will be more rigorous in
section 3.

To summarize, for p # 6, the general bound (2.4) is also valid near Dp-brane singularity
since o2 stays finite, but it becomes trivial for p = 6. In this case, we checked explicitly
that Ric™7 is still bounded from below near a D6-brane, since a local computation shows
that Ric™/ diverges to +00. Also, by plugging the local behavior (2.12) in (2.2), we see
that for p < 5 the locus r = 0 is at infinite distance.

Finally, let us comment on other localized sources. First of all, fundamental strings
(F1) and NS five-branes (NS5), behave exactly as D1 and D5 branes, respectively, as a
consequence of the fact that our starting point, the asymptotic 10-dimensional Einstein
metric (2.9), is invariant under S-duality (or more generally under the SL(2,Z) symmetry
of type IIB string theory).

For M2 and M5 branes in M-theory, the asymptotic barred metric has again the
form (2.10), now with H ~ (r/r9)4~%, ¢ = {2,5}. The warping function behaves as

ef:egAN{H ?; M2 forr — 0. (2.18)
H™2 M5
In both cases o2 is finite, thus implying a bounded Ric/. An explicit computation shows
that Ric™f is bounded as well. Both for M2s and M5s, the singularity is at infinite distance.
We summarize our results in table 1.

D-brane metrics are of RCD(K, N) type, as we will prove in section 3. More precisely,
for every N € (n, oo] there exists K = K(n, N) > —oo such that the D-brane is RCD(K, N)
space. Notice that, outside the singularities, the D-brane is an n-dimensional smooth
weighted Riemannian manifold with N-Bakry-Emery Ricci curvature bounded below by
K = K(n,N) > —oc0. As a consequence of the discussion above, these results also hold for
fundamental strings, NS five branes, and M-branes in M-theory.



2.3 Mathematical preliminaries

The aim of the following sections is to fix the notation and recall some basic constructions
in the theory of metric measure spaces which play a role in the statements and the proofs
of the mathematical results contained in the paper. In particular, we provide a formal
definition of the RCD(K, N) class and we clarify what we mean by Laplacian, eigenvalues,
Cheeger constants, in this general setting. A non-interested reader can skip these parts,
the only essential fact to keep in mind is that there is a way to properly define all these
notions for non-smooth spaces in such a way that they coincide with the usual ones for
(weighted) Riemannian manifolds, as discussed in the previous sections.

An oft-cited prototype for these ideas is convexity of a function f : R — R. At the
differential level this can be of course formulated as 92f > 0. But alternatively one can
write it as

F((L=t)z +ty) < (1 —t)f(2) +1f(y) (2.19)

for any ¢t € [0, 1], =, y € R. While for smooth functions these two conditions are equivalent,
the “synthetic” (2.19) applies more generally. In the same way, we will describe here
a version of Ricci lower bounds such as (2.4) that applies also to singular spaces, using
optimal transport theory.

2.3.1 Metric measure spaces

Let (X,d) be a complete metric space and m a non-negative Borel measure on X, finite on
bounded subsets. The triple (X, d, m) is called metric measure space, m.m.s. for short.

We call (X,d) a geodesic metric space if every couple of points x,y € X can be joined
by a geodesic in X, i.e. a curve

v:[0,1] = X with d(vys, 1) = |t — s|d(70,m1) Vs,t € [0,1]

and such that y9 = z, 71 = y, where we have used the notation 7 := ~(t). The space of all
geodesics in X will be denoted by I'(X).

Given a metric measure space (X,d, m), we denote by P(X) (resp. P2(X)) the set of
Borel probability measures over X (resp. the set of Borel probability measures over X with
finite second moment). We endow the space Py(X) with the 2-Kantorovich-Wasserstein
distance Wh : Pa(X) x P2(X) — [0, 00), defined as

W2 (o, ji1) = inf {/ d?(x,y)dn(x,y) : m coupling of pg and ,ul} . (2.20)
X

XX

By coupling we mean a measure 7 € P(X x X) whose marginals [y dyn(z,y) and
Jx dzm(x,y) are respectively equal to po(x) and pi(y). It can be shown that the prob-
lem (2.20) has always (at least one) minimizer 7, called optimal coupling. A coupling is
also called a transportation plan since 7(x,y) describes how to move “mass” from x into
y, in order to transform the distribution pg to p1. With this intuition, the marginality
requirement on the second factor, [y dym(z,y) = po(x), means that all the mass that is
going to y comes from gy while the other marginality condition, [y dzw(z,y) = pi(y),
imposes that all the mass moved out from z goes into ;. A transportation plan 7 is



then optimal for the 2-Kantorovich-Wasserstein distance if @ minimizes the total cost of
transforming o to 1 when the cost of moving one unit of mass from x to y is d(z, y), the
square of the distance function in X. Thanks to this property, the distance (2.20) allows
to compare two probability distributions in a way that takes into account the geometry of
the underlying space.

Moreover, the optimality of 7 is equivalent to the fact that 7 is concentrated on
a cyclical monotone set, i.e. 7 is an optimal coupling if and only if there exists a set
Q C X x X such that 7(Q2) = 1 and for every k € N, every permutation o of {1,...,k}
and every (x1,y1),- -, (Tk, yr) € Q it holds

k

k
Z xzayz Zd2 ':U’Laya'(z
i=1

=1

This means roughly speaking that the transportation plan cannot be improved by a reshuf-
fling of the locations to which bits of mass are transferred (see [32, chapter 5)).

The space of real-valued Lipschitz functions® over X is denoted by Lip(X); we write
f € Lipps(X) if f € Lip(X) and f is bounded with bounded support. Given f € Lip(X),
its slope |V f|(z) at € X is defined by

IV f|(2) {hm sup, ., PW-SDI - if 4 s not an isolated point,
xXr) = )

(2.21)
otherwise.

The Cheeger energy (see [33], and [34] for the present formulation) is then defined as

Ch(f) = inf {hnrr_l)gf;/ \an\Qdm : fn € Lip(X) N LQ(X),fn — fin L2(X,m)}
* (2.22)

In an equivalent way (see for example [34] or [13, section 4.4]), the Cheeger energy can be
defined in terms of the minimal relazed gradient |Df| of f € L*(X,m) as

Ch(f) = ;/X\Dﬂ?dm, (2.23)

with the convention Ch(f) = 4o0 if f has no relaxed gradient. In this form, it can be
thought of as the generalization to possibly non-smooth spaces of the classical Dirich-
let energy. Notice that the Cheeger energy is a lower semicontinuous, convex functional
on L?(X,m).

We introduce the Sobolev space

WhH3(X,d,m) = {f € L*(X,m) : Ch(f) < +o0},

endowed with the norm || f||3,12 := || f]|32 + 2Ch(f). Notice that, at this level, the space
W12(X,d, m) is Banach but not in general a Hilbert space.

3Recall that a real-valued Lipschitz function f over a metric space (X,d) is one for which a K exists
such that |f(z) — f(y)| < Kd(z,y) for every z,y € X.

~10 -



Definition 2.1 (Infinitesimally Hilbertianity). A m.m.s. (X,d, m) is infinitesimally
Hilbertian if W12(X,d, m) is an Hilbert space or, equivalently, if

Ch(f +g)+ Ch(f —g) =2Ch(f) +2Ch(g) for every f,g € WI’Q(X,d,m). (2.24)

In this case, we denote by £ the symmetric bilinear form associated to the Cheeger
energy, obtained by the standard polarization procedure:

£(f.9) = 5(Ch(S +g) ~ Ch(f — g). (225)

We finally remark that Lipp,(X) € W12(X,d, m) since for every f € Lip(X) it holds
[Df|(x) <[V f(2).

2.3.2 Synthetic Ricci lower bounds

An optimal coupling between two probability distributions pg and u; can be induced by
a probability distribution v in the space of geodesics. To see this, notice that for any
z € X, we can identify dug(x) (resp. dui(z)) with v evaluated on all geodesics in X that
start (end) in x. Precisely, given a m.m.s. (X, d, m), a probability measure v € P(I'(X)) is
called optimal dynamical plan if (eg, e1)sv is an optimal coupling between (eg)yv and (eq)sv
for the W, distance. Here, (e;);v denotes the push forward of the measure v through the
evaluation map e, : I'(X) — X defined as e;(y) := 7. Intuitively, this dynamical plan tells
us not only where to transport each bit of “mass”, but also along which path.

For any geodesic space (X,d) and for any pg,pu; € Po(X) there exists an optimal
dynamical plan v such that (e;)sv = p, @ = 0,1. If v is an optimal dynamical plan, then
(er)sv is a Wasserstein geodesic between the marginals (e;)s = p;, @ = 0,1. (We refer
to [32, corollary 7.23] for a proof of these facts.)

Now, the behavior of geodesics is of course related to curvature. It turns out that
one can use this fact to give a version of a bound on the Bakry-Emery curvature that
is synthetic, or in other words that generalizes better to singular spaces (recall our toy
example (2.19)). The details of how one gets to the correct definitions are rather involved
and we cannot do them justice here, but see [32, chapter 16, 17].

Given K € R, N € (1,00), # > 0 and ¢ € [0, 1], we define the distortion coefficients as

i N—1
Ty (8) = tx oy (6)°F

where
00 if K62 > Nn2,
sn(0VE/N) e - K62 < N2
(t) sin(@ K/N) ’
) = t if K62 =0
sinh (t0/K/N) i KO < 0
sinh (0+/K/N) )
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We also introduce the relative entropy functional:

Enty : Pa(X) — RU {+00}

[plogpdm if u = pm and plogp € L' (X, m),
Entp(p) := '
400 otherwise,

and its domain

D(Enty) == {p € P2(X) : Entn(p) € R}.
We are now ready to define the curvature dimension condition.

Definition 2.2 (CD(K, N) condition [22-24]). Given K € R and N € (1,00), we
say that (X,d, m) verifies the CD(K, N) condition if for any pair of probability measures
o, 1 € P2(X) with bounded support and with pg, 1 < m,* there exist a Ws-geodesic
(Vt)tepo,1) = prm with v = g, v1 = p1 and a Wh-optimal coupling m € P(X x X) such that

1 - % -
/ pe ¥ dm > / [T;];?w(x,y))pw + i (d(@,y))py ¥ | dn(a,y),
X XxX

for any N’ > N, t € [0, 1].
We say that (X,d,m) verifies the CD(K, o) condition if for any pair of probability
measures fio, 41 € D(Enty) there exists a Wa-geodesic (v4),¢(0,1) With 1o = po, v1 = p1 and

Entw () < (1 — ¢)Entm(vo) + tEntw (1) — %(1 — OWE(vg, ). (2.26)

The CD condition has been later reinforced by Ambrosio, Gigli, Savaré [16] (see
also [17-21]), who introduced the so-called RCD condition.

Definition 2.3 (RCD(K, N) condition). Given K € R and N € (1, 00|, we say that
(X,d, m) verifies the RCD(K, N) condition if (X, d, m) satisfies the CD(K, V) condition and
it is infinitesimally Hilbertian.

Remark 2.4. Every n-dimensional Riemannian manifold (M, ¢g) equipped with the geodesic
distance d and the weighted measure dm(z) = e~/®dvol, is RCD(K, N) if and only if
N € [n,o00] and

RicY/ (v,v) > K||v|17, a1 for every v € T, M,

where Ric™/ := Ric and Ric™/ was defined in (2.5) and (2.7).

With respect to the CD condition, the RCD condition rules out the Finsler manifolds
that are not Riemannian.
It is not difficult to see that RCD(K, N) C RCD(K, o0), and the inclusion is strict as

||

shown for instance by considering the Gaussian space [ R™,| - |, e_2) which is RCD(1, o0)

but not RCD(1, N) for any finite N.
It follows from the definition of RCD space that the Banach space W2(X,d, m) is
actually Hilbert, and one can prove that Lipp,(X) C WH2(X,d, m) with dense inclusion.

“Here and below we write ;1 < m if p is absolutely continuous with respect to m, i.e. for any Borel set
E such that m(E) = 0 we have u(E) = 0.
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2.3.3 Laplacian, spectrum and Cheeger constants

In this section we assume (X,d,m) to be a RCD(K, 00) space, K € R. We define the
set D(A) as the set of f € WH2(X,d, m) such that Ch(f) # 0, where OCh denotes the
subdifferential of the Cheeger energy.” For f € D(A) we define Af as the element of
minimal L?(X,m) norm in OCh(f). Notice that we are adopting here the convention that
A has a non-negative spectrum, according to the physical literature.

It is easily seen that, in case (X,d,m) is the metric measure space associated to a
smooth weighted Riemannian manifold, then A coincides with the Bakry-Emery (-Witten)
Laplacian (2.8).

Recall that, by the RCD assumption, the Cheeger energy is a quadratic form on
Wh2(X,d,m). The associated bilinear form & : (VVLQ(X,d,m))2 — R defined in 2.25
satisfies the relation

1
£(u,v) = §/ wAvdm, forall u € WH2(X,d,m) and v € D(A).
X

It follows that A is a self-adjoint, non-negative operator on the Hilbert space L?(X,m). It
is also a classical fact (easily obtained by regularization via heat flow) that the finiteness do-
main D(A) is dense in L?(X, m). Thus A enters in the framework of non-negative, densely
defined, self-adjoint operators in Hilbert spaces and we can invoke standard literature.

A number X € C is a regular value of A if (AMd + A) has a bounded inverse. The
spectrum of A is the set o(A) of numbers A\ € [0,00) that are not regular values. We call
a non-zero function f € D(A) an eigenfunction of A of eigenvalue X if it holds Af = \f.
The set of all eigenvalues forms the so-called point spectrum. The discrete spectrum oq(A)
is the set of all eigenvalues that are isolated in the point spectrum with finite dimensional
eigenspace, and finally the essential spectrum can be defined as gess(A) := o(A) \ 04(A).
We also denote by ¥ the infimum of the essential spectrum of A, i.e.

Y = inf oes(A) and Y= 400 if gegs(A) = 0.

We remark that ¥ = +oo for every bounded RCD(K, 00) space, since it remains true even
in this general setting that spaces with finite diameter have discrete spectrum [28].
Given f € W12(X,d, m), f # 0, its Rayleigh quotient is defined as

R(f) = () (2.27)

x| fPdm”
It is well known that the eigenvalues of A can be characterized variationally. More
precisely, the set of eigenvalues below > is at most countable and, listing them in an
increasing order \g < A1 < -+ < A < ..., it holds

A, =min  max  R(f), 2.28
g Vir1 f€Vk41,fZ0 (f) ( )

where V), denotes a k-dimensional subspace of W12(X,d, m) (see for instance [35] for a
proof of this general version of the min-max principle). If the Sobolev embedding W12 <

"Given u € W13(X), we say v € OCh(u) if fX v (¢ —u)dm < Ch(y) — Ch(u) Vi € L*(X).
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L? is compact, there is no essential spectrum. Notice that in particular it follows that
Ao = 0 corresponds to a constant eigenfunction fy. If the space X has singularities, if
the embedding is not compact and ¥ = 0, it is possible in principle that A\ = 0 is an
eigenvalue but that there exists a non-constant associated eigenfunction fy (i.e. a non-
constant harmonic function in L?); this was suggested in [36] from a physics perspective.
We will examine this phenomenon in a forthcoming work [15].

Given a Borel subset B C X with m(B) < oo, the perimeter Per(B) is defined as
follows:

Per(B) := inf{li%inf/ |V foldm : £, € Lipps(X), fn — x5 in LY(X, m)}
n—oo X

This seemingly complicated definition reduces to [,z efdvol,_; for a measure dm = ef dvoly
such as those discussed below (2.4), and for a set B with a smooth boundary 9B.

We define the k-Cheeger constant (or k-way isoperimetric constant) as
Per(B;)

inf  max ———= (2.29)

hi(X) ==
K(X) Bo,...,By, 0<i<k m(B;)

where the infimum runs over all collections of k£ 4 1 disjoint, Borel sets B; C X such that
0 < m(B;) < oo (see [37-40]). It is easy to see that hy(X) < hg41(X) for every k£ € N and,
for spaces with finite measure, ho(X) = 0.

The case k = 1 plays a prominent role. Indeed, h; corresponds to the classical isoperi-
metric constant introduced by Cheeger to bound from below the first eigenvalue of the
Laplacian on a compact Riemannian manifold [41], justifying the name of these constants.
Notice that for spaces of finite measure

hi(X) = inf{PniE(BB)) : B C X Borel subset with 0 < m(B) < m(X)/Q} . (2.30)

For a measure dm = e/dvol,, with f = (D —2)A as in (2.6), this reduces to (1.2) thanks to
the well known approximation of a finite perimeter set by sets with smooth boundary (see
for instance [42, theorem 3.42] for a proof in the Euclidean framework, which can be easily
adapted to the smooth weighted Riemannian setting by working in local coordinates).

3 D-brane type singularities are RCD

The aim of this section is to prove that the singular metrics and the corresponding weighted
measures appearing in the definition of a D-brane satisfy the RCD condition.

To be more precise, for p < 5 we will see that there is essentially nothing to prove; for
D6- and D7-branes we need separate and lengthy treatments, which will however apply to
the physically unrealistic situation where the metrics and the weighted measure are exactly
of the form (2.10) and (2.11) respectively near the tips of the ends. In concrete solutions,
this will only be the case asymptotically as r — 0. Encouraged by the current exact results,
we expect that a rigorous result can be proved also for asymptotic D6- and D7-brane metric
adapting the techniques in [30]; we will investigate this in future work [15]. These results
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also hold for fundamental strings and NS five-branes, which behave exactly as D1 and D5
branes, and for M branes as well, since they enjoy the same curvature properties of the
p < 5 case (cf. table 1).

In order to properly formulate the statement of our theorem, let us define the metric

measure structure that we are going to consider.

Definition 3.1 (D-brane type metric measure spaces). We define a D-brane type
metric measure space as a smooth and compact Riemannian manifold (X, g) glued (in a
smooth way) with a finite number of ends where the metric ¢ is of the form (2.10) in a
neighborhood of the point {r = 0}. Recall that dx127+1—d is the flat metric of the (p+1—d)-
dimensional Euclidean space, dség_p is the round metric on the (8 — p)-dimensional sphere
S8~P and H(r) is defined as in (2.12). We endow X with a weighted measure and view it
as a metric measure space (X,d, m) where:

o the distance d between two points p,q € X is given by

dpa) =t [9(/(0).7/(0)

with I'(p, ¢) denoting the set of absolutely continuous curves joining p to q.

o the measure m is a weighted volume measure m := ef dvoly, with e/ smooth outside
the tips of the ends and equal to (2.11) in a neighborhood of the point {r = 0}.

We are now ready to state our main result of this section.

Theorem 3.2. For every n-dimensional D-brane type metric measure space (X,d, m) and
for every N € (n, 00| there exists K = K(n, N) > —oo such that (X,d, m) is an RCD(K, N)
space.

Proof. Notice that it is not restrictive to assume that X has only one end. Moreover, in our
argument we can also neglect the flat part given by the Euclidean metric d:c; 41_q thanks
to the tensorization property of RCD spaces (see [18, theorem 7.6] after [16, theorem 6.13]
for N = oo and [19, theorem 3.23] for N € (1, 00)).

We denote by O := {r = 0} the tip of the end. As we are going to explain, the point
O may or may not be included in X.

Since the distance and the measure are smooth in the compact region outside a neigh-
bourhood of O, it is clear that we only have to check that the RCD(K, N) condition is
satisfied for a space X with metric

g = H(r)(dr* 4+ r?dsis_,)

and measure
_ p=T
m = H(r) 2 dvoly

near O.
With this notation and these assumptions in mind, we divide the proof in three cases
and we start to prove that the CD(K, N) condition is satisfied:
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e Case p < 5. We notice that the distance between O and any other point is infinite.
We thus do not include the point O in X so that the space (X, d) is a complete metric
space. Since the Ricci curvature stays bounded from below when r — 0 as shown
in (2.17), we can conclude that (X,d,m) is a CD(K, N) space (actually, a smooth
manifold).

o Case p = 6. In this case we consider O € X. To prove that (X,d, m) is an CD(K, N)
space we adapt the strategy proposed by Bacher and Sturm in [43]. Indeed, after the
change of variable p = 2,/r the metric g takes the form

1
g=dp*+ 1p2d3§2, (3.1)

with measure 1
m= §p3 dvol, dvolgz (3.2)

in a neighbourhood of the point O.

Notice that from the metric point of view we can infer that our manifold is
locally a cone. Moreover m is absolutely continuous with respect to the standard
cone measure and thus we can follow verbatim [43, theorem 4] and show that any
optimal dynamical plan with first marginal absolutely continuous with respect to m
gives zero mass to geodesics through O. By (2.17) we also know that the weighted
Ricci curvature stays bounded from below by a constant on the set {p > 0}.

Thus, as in [43, theorem 5] and using the characterization of the curvature di-
mension condition given in [43, lemma 2], we can deduce that the CD condition is
satisfied since this is true on the set {p > 0} and almost any (with respect to any
optimal dynamical plan v such that (eg);r < m) v € I'(X) stays on this set.

« Case p = 7. We consider O € X. We make the change of variable p=/;/—1log(s) ds
so that the metric g takes the form
g =dp* + f(p)dsi, (3:3)

with measure

m = 4/ f(p) dvol, dvolg: (3.4)

in a neighbourhood of the point O, where f(p) corresponds to the factor — log(r)r?

written in the new variable p. Since

—1 2</7’ —1 d for0<r<1, 3.5
\/— log(r)r ; \/—log(s)ds or r (3.5)

as one can easily notice by comparing the derivative of the two sides of (3.5), we have

0< flp) <p°
This fact and the expression of g lead to the following two crucial facts for the distance
dg associated to g:

— for every z € S! we have dj((x, p),0) = p.
— the distance dj is bounded from above by the standard cone distance, i.e. for
every couple of points A := (xq, pg), B := (21, p1) we have

dg(A4, B) < dgs1) (4, B) := \/P(Q) + pi — 2pop1 cos(ds1 (wo, 21))-
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Again, to prove that X endowed with the given distance and measure is CD(K, N)
we adapt the strategy proposed by Bacher and Sturm [43] to which we refer for all
the details. First of all, we notice that thanks to (2.17) the weighted Ricci curvature
stays bounded from below by a constant on the set {p > 0}.

Thanks to the argument of [43], we know that the result follows if we prove that

(a) for any optimal dynamical plan v such that (eg)sr < m we have v(I'g) = 0,
where

I'o:={yeI(X):v =0 for some t € (0,1)}, (3.6)

and the well-posedness and the proof of the statement (a) is a consequence of the
following two facts (see [43, theorem 4]):

(1) for every t € (0,1) there exists at most one geodesic v € supp(v) with v, = O.

(2) For every p > 0 there exists at most one z € S! such that vy = (z,p) is the
initial point of some geodesic v € supp(v) N T'o.

Indeed, once we have (1) and then (2), (a) can be proved by contradiction by
assuming that v is supported on I'o with v(I'g) > 0. We can also assume that vy # O,
v # O for v-a.e. v (or in other words, that the set of geodesics that neither start
from nor end in O has measure zero with respect to ). This can be done since m
gives no mass to O. The desired contradiction can now be reached since by (2) the
measure [y := (eg)4(v) is concentrated on a set of the form

Cr={(f(p);p) : p> 0}

for some function f, and m(Cy) = 0.

Thus, it remains to prove (1) and (2).

To prove (1), let us consider two geodesics 7,7 € supp(v) passing at time ¢
through O. We have 79 = (z0,tp), 1 = (71, (1 — t)p) for some xp,z; € S' and
similarly v = (zg,tp’), ¥4 = (2}, (1 = t)p). If p > 0 (resp. p' > 0), we can assume
that xg, z1 (resp. xp, 2}) are antipodal. This is a consequence of the following lemma:

Lemma 3.3. Let v : [0,1] — X be a non-constant geodesic with endpoints ~y =
(zo, po) and v1 = (x1,p1). If v¢ = O for some t € (0,1), then z¢ and x; are antipodal
as points in ST.

Proof. Due to the expression of dj, we know that py = tdg(v0,71) and p1 = (1 —
t)dg (70, v1) which implies p; = £ py. In particular

(1 1)
t2

P
% =d i cos(ds1 (2, 1))

(3.7)

P —2

1-t¢
2(v0,m) < dggny(o,m) = p + ( ; )

from which cos(dsi (29, 1)) < —1 that proves the claim.
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Now the proof of the point (1) is a consequence of the cyclical monotonicity.
Indeed, using the triangle inequality for dg(si), we know that

0. < d3(10,74) + 5 (30 1) — 3 (30, ) — 3 (3. 71)
< d3sr) (10,71 + gy (0, 11) — p° = 0
<[tp+ (=) + [t + (1= )p*p* = p'* = =2t(1 = t)(p — p')°

which implies p = p’. Using now this information, we can derive

0 < d2(v0,71) + d2(70:71) — d2(v0,71) — d2(76,71)
< dZs1)(70,71) + sy (96, 11) — 20°
= —2p%t(1 — t)[2 + cos(dg1 (z0, £})) + cos(dg1 (f, 21))]
and in particular zp and 2} are antipodal and thus zg = z{, and x; = 2.
To prove (2) we consider 7,7 € supp(v)NTo with vo = (x0, p), 7 = (x4, p) where
p > 0. Since by assumption v and «/ are geodesics that pass through the origin, we
also know that v = (z1,p1), 7 = (2}, p}) where dgi(zo,21) = 7, dgi(xp,2)) = 7
and p1, p} are positive real numbers. Again by cyclical monotonicity and the upper
bound on dj we have

0 < d3(70:71) + d5 (16, 1) — d5 (30, ) — d2 (70, 71)
<d

%’(Sl)(’mﬂ/i) + d%’(gl)(’%)a'yl) —(p+ p1)2 —(p+ p/1)2
= —2pp![1 + cos(ds1 (zo, z1))] — 2pp1[1 + cos(dg: (), 21))]

that force zp and 2 to be antipodal and thus zg = .

Case p = 8. Let us first recall the expression of the metric and measure of an
8-brane. Let hg > 0 be a positive constant and set

H(r):=1—hg|r|, forre[—(2hg)™", (2hg)71]. (3.8)
The metric and the measure are given respectively by
g=H(r)dr?, wm=eldvoly = HY?dvoly, for r e [—(2hg)~L, (2h8) 7). (3.9)

As above, by the tensorization property, it is enough to check that the 1-dimensional
metric measure space

([=(2hs) ™, (2hs) 1], H(r) dr?, H'*dvolz) (3.10)

satisfies CD(K, N) for any N > 1, for some K = K(N) € R. Notice that the
C'-diffeomorphism

t(r) == —328 sgn(r) [(1 — hglr|)¥/2 — 1] (3.11)
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gives an isomorphism of metric measure spaces between the orginal (3.10) with the
weighted Euclidean segment

1/3
([_31218(1_(2)3/2)’3#%8(1_(2)3/2)] o (1—2h8|t\) dvolR>. (3.12)

Hence, our claim is equivalent to check that the m.m.s. in (3.12) satisfies CD(K, N).
Recall that a segment (I,deua, ef dvolg) satisfies CD(K, N) if and only if f is semi-
concave (thus, in particular, locally Lipschitz and twice differentiable a.e.) and it

satisfies
1
" ——(f) < -K 3.13
F e () < (3.13)
in distributional sense (see for instance [21, appendix A]). Now, a direct computation
gives that the left hand side of (3.13) corresponding to the space (3.12) is

3 3 21 1

in distributional sense on [—ﬁ(l —(2)7%/2%), ﬁ(l - (2)*3/2)}, where §p denotes the
Dirac mass distribution centred at 0 € R. We conclude that the space (3.10) satisfies
CD(0,N) for every N > 1, and thus the metric measure space associated to the

(barred, i.e. transverse part of the) 8-Brane (3.9) satisfies CD(0, N), for every N > 1.

This concludes the proof that (X,d, m) is a CD(K, N) space. In order to show that it

is an RCD(K, N) space, we need to show that the Cheeger energy is a quadratic form. As

above, the only possible non-trivial cases are p = 6, 7. Recall that, in both cases, we proved

that for any optimal dynamical plan v such that (eg);r < m we have v(I'g) = 0, where

I'o is the set of geodesics passing through the singular point O, see (3.6). By the approach

to weak upper gradients via optimal transport (see [34]), it follows that the weak upper

gradient coincides with the modulus of the standard Riemannian gradient on the smooth
part X \ {O}. The infinitesimal Hilbertianity now easily follows by using that m({O}) = 0:

Ch(f +9)+Ch(f —g) = [ DU +9)dm+ [ ID(f —g)[ dm

= [ D+ gPAn+ [ DG - g)Pdm
X\{0} X\{0}

=2 |Df]2dm+2/ |Dg|? dm
X\{0} X\{0}

:2/ |Df|2dm+2/ |Dg|? dm
X X

= 2Ch(f) + 2Ch(g).
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4 New bounds on spin-two masses

As we have described in section 2.1, the masses of the spin-two fluctuations around any
vacuum compactification are given by the eigenvalues of a certain universal operator [2,
3], which in the language of Bakry-Emery geometry can be rewritten as the weighted
Laplacian (2.8). In [1], this connection to Bakry-Emery geometry was exploited to put
rigorous bounds on the spin-two masses in terms of either the internal diameter or the
reduced Planck mass. The results followed from the curvature bound (2.4) and from the
application of known mathematical theorems that bound the eigenvalues of the Bakry-
Emery Laplacian in term of the weighted volume or the diameter.

In this section we present new bounds on the masses of spin-two fields in gravity
compactifications in terms of the isoperimetric constants. We discuss the first spin-two
state in section 4.1 and the higher ones in section 4.2. In section 4.3 we then interpret
them from the holographic point of view. These bounds are obtained by applying both
known and new mathematical results, which we present and prove in section 4.4. As we
will see, these new results hold in the more general RCD setting introduced in section 2.3
and thus apply to general compactifications with brane sources, as discussed in section 3.

4.1 The first eigenvalue

In the classical compact Riemannian setting, the measure is just dm = dvoly, and the first
Cheeger constant h; introduced in (2.30) is simply
Vol(9B)
hy =inf ———=; 4.1
=15 Vol(B) (41)
in this situation the infimum can be taken among all the n-dimensional smooth sets B C M,
such that 0 < Vol(B) < £Vol(M,). Without any assumption on the curvature of M,,
the Cheeger inequality [41] provides a lower bound on the first positive eigenvalue of the
standard Laplacian:

)\1 > *hl . (42)

If the Ricci curvature is bounded from below by a non-positive constant K, Ric > K,
Buser [44] also found an upper bound in terms of h; and K:

A < 2hiy/—(n— 1)K + 10R3. (4.3)

If Vol(M,,) is infinite, the constant functions are not square integrable and thus A9 may
be strictly positive. In this case, a version of Cheeger’s and Buser’s inequalities still holds
by replacing A; with A9 and h; with hg, which is defined again as in (4.1) but with the
infimum now taken among all the subsets of M, of finite volume.

These classical geometrical results are encouraging, since they allow to constrain A;
pretty tightly for manifolds like the ones in figure 1, which have a small hy (or hg) due to
their bottlenecks. However, they are of limited use for general gravity compactifications,
which generically have a non-trivial warping factor A as in (2.2). In this case, the masses
of the spin-two fields are not given by the eigenvalues of a standard Laplacian, and the
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equations of motion do not allow to extract a general lower bound on the Ricci tensor, since
terms involving second derivatives of A do not have a definite sign. Moreover, interesting
dynamics often requires the presence of localized sources which, in addition to sourcing a
non-trivial warping factor, can introduce singularities in the internal space, forbidding a
direct application of the classical results obtained in the smooth setting.

Luckily, these difficulties can be overcome with a natural extension of the Riemannian
setting. As shown in [1], in compactifications of theories that satisfy the REC (2.3), the
Bakry-Emery generalization of the Ricci curvature tensor is bounded from below by a
negative constant (2.4) only depending on the cosmological constant and on an upper
bound on the gradients of the warping. As we will review more in detail in section 4.4, two
of the present authors proved in [6] that the classical inequalities (4.2) and (4.3) can be
generalized as well. More precisely, when the measure induced by the Riemannian metric
g is weighted by a function e/ := e(P=24 (2.30) becomes:

Jdvol (d-1)A
hq := inf Vol; (05) := inf Jop d%_l = inf Jo © dvol, -1 ,
B Voly(B) B [geldvol, B [zeld=24dvol,

(4.4)

generalizing (4.1). Again B should be such that 0 < Vols(B) < 3Vol¢(M,).
Then, calling K the constant that bounds the Bakry-Emery-Ricci curvature from below
(which is K = — (|A| + DU_ZQ) in (2.4)), [6] showed that

1 21 22
Eh% <m? < max{lohlx/ -K, 5h%} , (4.5)

where m? is the first non-trivial spin-two mass, i.e. the first non-trivial eigenvalue \;
of the Bakry-Emery Laplacian (2.8). Notice that the first inequality in (4.5) does not
require a curvature bound, generalizing (4.2). Moreover, as we describe more precisely in
Th. 4.1 and Th. 4.2, these results also hold in the more general RCD setting introduced in
section 2.3. Following the discussion in section 3, this implies that (4.5) is also valid for
compactifications with brane sources.

When the weighted volume [ M, ef dvol,, is infinite, the massless graviton is not dynam-
ical and (4.5) applies to the first mass. Similarly to the Riemannian case, hy is computed by
taking the minimum among all the Borel sets with finite weighted volume, and h1 in the sec-
ond inequality needs to be replaced by %ho. In particular, compactification manifolds with
infinite weighted volume and a very small h; provide a method to realize lower-dimensional
massive theories of gravity from higher dimensional theories with a massless graviton.

To better understand the physical properties of compactifications with a light spin-two
field, for example to assess whether the higher spin-two modes also have small masses or
if instead a gap is possible, we need to bound the higher eigenvalues of the Bakry-Emery
Laplacian. We turn to this now.

4.2 Higher eigenvalues

The notions introduced above can be generalized to higher eigenvalues. Intuitively, the
number of small necks that disconnect the manifold if completely shrunk is related to
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the number of small eigenvalues (cf. figure 3). This notion can be formalized in terms of
the multi-way isoperimetric constants (2.29). For Bakry-Emery manifolds, where dm =
efdvol,, f = (D — 2)A, they read

14(0B; ~efdvol,,_
hi = inf Voly(0B:) _ maxw.

= — = — 4.6
BoroBy 0245k Vol (B;) Bo,...By 0<i<k [ efdvol, (4.6)

recall that the infimum is now taken among all the collections of k 4+ 1 disjoint subsets
By, ..., B of M,, with smooth boundary and of positive measure. Roughly speaking, hy
is small when M,, can be disconnected in k + 1 pieces, all of them with small necks.

For k = 1, superficially (4.6) might look different from (4.4): we have two B; rather
than the single B in (4.4). But we also no longer have the requirement that Vol;(B) <
+Vol(M,). With this remark, h; does reduce to the (weighted) Cheeger isoperimetric
constant (4.4).

As we will see in Th. 4.9, there exists a universal constant C' > 0 (not depending on
the Bakry-Emery manifold nor the dimension) such that the k-th spin-two state has a mass

my > C 1k 3hy, . (4.7)

Thus, if the hj-th isoperimetric constant is not small, the mass of the k-th spin-two state
cannot be small either. We will apply this result in the explicit examples below. A partic-
ularly direct application is in section 6, where the h; will be related to small necks arising
in the decomposition of Riemann surfaces. We will also see there how it agrees with known
results on the spectrum of the Laplacian on Riemann surfaces.

As in the case for the first eigenvalue, the lower bound (4.7) does not require any
assumption on the curvature. However, when a curvature bound is known, we can also put
upper bounds on the higher eigenvalues, as we will prove in Th. 4.4, Th. 4.7 and Th. 4.8.
For example, when Ricy is bounded from below by K < 0, the k-th spin-two mass is
bounded from above as

mi < k? max{—1421512K,2925568\/jhk,61;552h2} . (4.8)

Notice that even if we have presented the results in this section in the context of Bakry-
Emery geometry, i.e. for Riemannian manifolds with measure weighted by a function e/,
we will prove in section 4.4 they hold in the more general RCD setting.

Finally, combining together various isoperimetric bounds, it is also possible to directly
relate the higher spin-two mode to the lightest one. For example, focusing again on the
general case of a negative K, we have

14112 2816
mi < k? max{— ,m%}

5% 3 (4.9)

We refer to Th. 4.4 for more details, including the infinite-volume case and stronger results
when K = 0. Recalling that for compactifications of general higher-dimensional theories
that satisfy the REC, K = — (|A\ + DU—EQ), as in (2.4), equation (4.9) provides a general
upper bound on the higher massive spin-two states in terms of the lightest mode.
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4.2.1 Spin-two conjectures

As an application of the bounds on higher eigenvalues, we will now comment on the spin-two
swampland conjecture of [7] and the massive-AdS-graviton conjecture of [8].

The conjecture of [7] concerns in general an effective theory of gravity coupled to a
massive spin-two field w,, of mass m. It states that such a theory is only sensible up to
energies Ag = mMp/M,,, where M,, is a certain scale associated with the interactions of
w,; and that beyond this scale, a tower of new fields must appear. In particular, in a limit
where the first non-trivial KK spin-two mass mj goes to zero, a whole tower of spin-two
fields with vanishing masses must appear.

The main argument presented in [7] in favor of the conjecture relies on its eq. (5),
which is motivated in flat space.® Thus AdS vacua might seem to be beyond its scope.
However, when the cosmological constant is much smaller than the spin-two masses, we
might expect the logic to still apply at least approximately; thus it makes sense to test it
with our methods in this regime.

Indeed (4.9) implies”

281 441 2
mi < %ka% if mi > —— <]A] + -2 ) . (4.10)

440 D -2

In other words, if we make m? small but still larger than (\A] + DU—EQ), and in particular
larger than |A|, then all the other my, are forced to be small as well.

Encouraged by this result, we may wonder if the conjecture also holds more generally
for AdS vacua, even when m? becomes as small as |[A|. The results in this paper suggest
a way to find counter-examples: if we can make hj arbitrarily small, while keeping finite
ho and the curvature bounds, the higher KK masses my, £ > 1 do not go to zero. This is
because (4.5) will result in an arbitrarily small my, while (4.7) puts a lower bound on ms.
In other words

ma

— >1 if hy < 1 with he, K fixed. (4.11)
mi

We will see explicit realizations of this mechanism in the examples in section 5 and 6.

However, it is important to stress that the tower of massless spin-two fields predicted
by the conjectures need not be the KK tower.® Thus the conjecture might still be respected,
even if mg/m; — 0o. A natural guess is that the predicted states might be provided by
branes that wrap the small neck. Indeed such states are very light in the relevant limit; if
they are not BPS, they belong to long supermultiplets which also contain spin-two fields.
It would be interesting to check this in detail.

SWe thank Eran Palti for illuminating correspondence regarding this point.

" Alternatively one can combine (2.40) and (2.41) in [1]. Inverting the latter with a Lambert W function,

one obtains a general bound relating my and mi, which in the regime m?i > e 'n%c(n)? (|A| + 2

D—2

becomes similar to the one we just gave.

8A different kind of subtlety is considered in [8], which suggests that the conjecture should only apply
when the limit m; — 0 is achieved continuously. This gives a different reason to exclude the examples of
section 5.
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CFT4

CFT}_, CFTZ_,

Figure 2. Sometimes an almost-split solution is dual to a CFT4 (or just a QFT4) on [0, 1] x R4~1,
with two CFT4_,, a = 1,2 on the boundaries.

4.2.2 Continuous part of the spectrum?

In the presence of some D-brane sources, the Cheeger constants can actually be zero. To see
this, consider a tubular neighborhood B = {r < R}, in the local coordinates of (2.9). Then

faB@eD 2)A qn—1, _ R8P /H(R) 5 T(()7—P)/2R(9—p)/2 Nr(p_7)/2R(5—P)/2
JpVaePDAde T RSl dr 0P [Frar |

(4.12)
For p < 5, this can be made arbitrarily small by taking R — 0; so h; = 0. In fact for this
range of values it is easy to see that the higher hj also vanish: we may take several annular
regions B; = {2R; < r < Ri+1}, with R; < R;4+1 and all R;11 — 0.

This behavior is compatible with the presence of a continuous part of the spec-
trum. This is confirmed by a local analysis of solutions; for example for p = 4 the
local eigenfunctions can be written in terms of Bessel functions, and behave as @ ~
r=5/% cos(m(r—'/? — ér)), with m arbitrary and 0r a constant. We think this continu-
ous spectrum is an artifact of the supergravity approximation, which would disappear if
higher-derivative corrections to the mass operators were taken into account. In any case,
most AdS solutions with back-reacted Dp—branes have p /> 5.

For p = 5, (4.12) gives the constant 7"0_ =17 1gS , which is very large when the
supergravity approximation is relevant; so hp is realized by taking B with a boundary not
near the D5. This case will indeed be relevant for the examples in section 5.

Finally for p > 5 we see that (4.12) grows as R — 0; so to take the infimum we want
to make R large, where the rest of the internal geometry comes into play, giving rise to a
finite hq. These are the cases where our proof of the RCD condition in section 3 was most

complicated, and to which we plan to return in the near future [15].

4.3 Holographic interpretation

An almost-split AdSy solution can sometimes be given a holographic interpretation. The
large regions almost look like separate CFTY_; models, a = 1,2, coupled very weakly by
the bridge connecting them. The bridge itself is sometimes dual to a d-dimensional field
theory QFTg; see figure 2. The latter can be conformal (section 5) or not (section 6).
There are several measures of a field theory’s number of degrees of freedom. For a
CFTy in d = even, one often uses its Weyl anomaly coefficients. Alternatively, the free
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energy F = FoVT%, where V and T are the volume and temperature; the coefficient Fj is
a measure of the degrees of freedom that works in any d, even or odd. Holographically

Fo(CFTy) el@=24qyol,, . (4.13)
My

This can be argued either by regarding the right-hand side as the on-shell action, or by
noticing that it is proportional to the reduced Planck mass and considering a large black
hole in AdSg41; see [45, section 4.1] for a version of this argument.

This suggests an interpretation for the Cheeger constant (4.4). The denominator is
the Fy of the CFT}_, associated to the smallest of the large regions. When the bridge is
associated dual to a CFT,, the numerator can also be interpreted this way, and we can
write

Fo(CFTy)

hoo —— -4
. Fo(CFT) )

(4.14)

In the examples of section 5, where d = 4, m? ~ h, and the relation of m; to (4.14) for
d = 4 was indeed noticed in [5, (25)].

The case where the bridge is dual to a CFT, has several related interpretations; see [4]
for a more thorough discussion.

o It can be viewed as the CFTy living on a spacetime I x R T = [0,1], with two
CFTY_;, a = 1,2 living at the two boundaries; this forms a “CFT sandwich”, as
was put in [46]. The CFT, has few degrees of freedom, and operators on one of
the CFTY_, can travel to the other with small probability. The individual stress-
energy tensors of the two theories are almost conserved, 0,7, (‘; l)' ~ (; only their sum
TH =T (‘il)' +T (‘;’)’ is exactly conserved. At large distances, the system looks like a
single CFT;_1, whose stress-energy tensor is TH.

o From the AdS4y; point of view, the two AdS, are “ends of the world” that meet at
the boundary; this was dubbed “wedge holography” in [47]. (This was the starting
point for a proposal for an accelerating cosmology in [46], and for a four-dimensional
realization of the island black hole phenomenon [48].)

o This class is also similar to the older double-trace deformations [49-51]; see also [8] for
a comparison. In those cases, the gravity dual consists of two copies of an AdSy x M,
solution that join at the boundary; so the AdS;41 region is absent.

e One can also view the bridge as a peculiar traversable wormhole which is accessible
from everywhere in spacetime [4].

In a similar manner, the non-compact space of figure 1b can also sometimes be in-
terpreted as a CFTy on R~ x [0,00) and a CFTy_; on its single boundary. This time
there is no T" that is exactly conserved; this is dual to the absence of a massless gravi-
ton, pointed out in the Introduction. This type of model is similar to those of Karch and
Randall [52, 53].
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4.4 Proofs of eigenvalues bounds

In this section we give rigorous proofs of various results relating eigenvalues of the Laplacian
and Cheeger constants. For simplicity, we will always assume to work with an RCD(K, 00)
space having eigenvalues below the infimum of the essential spectrum, and we recall the
notation introduced in section 2:

Y = inf e (A).

Nevertheless we remark that some inequalities, in particular those concerning lower bounds
of the eigenvalues in terms of Cheeger constants, do not depend on the Ricci curvature
lower bound and can be indeed proven under weaker assumptions on the space (see for
instance [6, 54, 55]).

First of all, we recall a partial outcome of [6], to which we refer the interested reader
for all the details and the proofs: the first result corresponds to the classical Cheeger
inequality [6, theorem 3.6]; the second one to the Buser’s inequality [6, corollary 1.2].

Theorem 4.1. Let (X,d, m) be an RCD(K,00) space, K € R. Let us suppose \y < ¥ (if
m(X) <o0) or g <X (if m(X) =o00). We have:
o ifm(X) < oo, then hi(X) <2
o Ifm(X) = o0, then ho(X) < 2

5 3

Theorem 4.2. Let (X,d, m) be an RCD(K, 00) space, K < 0. Let us suppose \y < X (if
m(X) <oo)orX <X (ifm(X)=o00).

o Case K =0, m(X) < co. It holds
A1 < mhi(X)2 (4.15)
In case m(X) = oo, the estimate 4.15 holds replacing A\ with Ao and hi(X) with
ho(X)/2.
o Case K <0, m(X) < co. It holds

Al < max {fé\/?hl()(), 252h1(X)2} . (4.16)

In case m(X) = oo, the estimate 4.16 holds replacing A1 with \g and hy(X) with
ho(X)/2.

Remark 4.3. The paper [6] contains slightly better estimates than those stated in theo-
rem 4.2, with an implicit version of the Buser’s inequality that makes it sharp for K > 0.
In the present article we are only interested in spaces with Ricci bounded below by a non-
positive constant, and we have decided to give the statement of the Buser’s inequality in
the form above to make the bounds more apparent.

We are now interested in similar bounds involving higher order eigenvalues and Cheeger
constants. We start with the following result that has been originally proven by Liu in the
context of compact Riemannian manifolds with non-negative Ricci curvature [40]:
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Theorem 4.4. Let (X,d, m) be a RCD(K, 00) space, K < 0. Let k € NT and let us suppose
that A\, < X.

o Case K =0. If m(X) < oo, then

N < 1287k2 ). (4.17)
In case m(X) = oo, we have
A\ < 321k \o. (4.18)
e Case K <0. If m(X) < oo, then
14112 281
A < max{ 55 — Kk, 5 6k:2>\1} (4.19)
In case m(X) = oo, we have
3528 704
A < Inax{ o Kk k%} (4.20)

Remark 4.5. As already noted by Liu in [40] (see examples 1.3 and 1.4 therein), the
quadratic dependence in k of the bounds given above is optimal.

Remark 4.6. We remark that the constant appearing in 4.17 is better than the one
obtained in [40].

Actually, theorem 4.4 will be a direct consequence of Buser’s inequality and the follow-
ing stronger result, which has been proved in [40, theorem 1.6] for compact Riemannian
manifolds and then extended to complete Riemannian manifolds in [56, theorem 1.4].

Theorem 4.7. Let (X,d,m) be a RCD(K, ) space. Let k € NT and let us suppose that
A < . Ifm(X) < oo, then
hi(X)? A, < 128K202. (4.21)

In case m(X) = oo, the estimate 4.21 holds replacing A1 with Ao and hi(X) with ho(X).

To prove theorem 4.7 we adapt the strategy originally proposed by Liu to the general
setting of RCD spaces. We remark that we are closely following the arguments of [40, 56],
to which we refer for more details. Here we only give a sketch of the proof emphasizing the
modifications needed in the possibly non-smooth framework.

Proof of theorem 4.7. Let f € Lip4(X) be non-negative, f # 0. We denote by

ot Per({z : f(z) > t})
20 m({x: f(zx) >t})

The result is a consequence of the following inequality

o(f) =

2
o(f) < sf\/’i”uvf“ﬂuﬂ, for all k € N. (4.22)

Indeed, theorem 4.7 follows by the definition of the Cheeger constant and by applying the
estimate (4.22):
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« to a sequence of functions f,, € Lipp,(X) converging in L?(X,m) to an eigenfunction
f of eigenvalue \g with |V f,,| = |Df| in L*(X,m), if m(X) = oo;

e to two sequences of functions f,, h, € Lipy.(X) converging in L?(X,m) respectively
to the positive and negative parts fT, f~ of an eigenfunction f of eigenvalue \; with
|Vfal = |[DfY| and |Vh,| — |[Df~| in L3(X,m), if m(X) < co.

We recall here that the existence of the sequences with the above stated properties is a
consequence of the density of Lip,¢(X) in WH2(X,d, m).
It is thus sufficient to prove (4.22) for any non-negative function f € Lipy(X), f # 0.
Given a finite set A of real numbers, we define the function 14 : R — R as

Pa(s) == arg min |s —t|.

We also set
na:R—>R na(s) :==|s —va(s)|
and

nag: X =R nap(e) =mnao fz) =|f(2) = Yalf(z))].

We now fix k¥ € N and we define by induction a sequence {t;} such that ¢, = 0 and,
given tg < t1 < --- < t;j_1, the number ¢; is defined as the smallest ¢ > ¢;_; such that

1
Hn{tj_l,t},fo—l((tj,l,t])H%Q = m”fo%? = CO (423)
if such a ¢ exists, and t; = || f||L~ otherwise. Denoting by

Fi =gy b X (o) T2 L

we notice that {f;} are a family of non-negative, Lipschitz functions in L*(X, m) (trivial if
tj—1 =||f|lLe) such that {f;, > 0} N {f;, > 0} = 0 whenever j; # jo. Moreover, for every
7y € X and j > 1 it holds |;(z) — £;(3)| < |£(z) — f(y)] so that

o0
SV IV
Jj=1

and in particular |V f;| € L*(X, m).
We also notice that tor = || f||ze~. Indeed, if this is not the case, the fact that tor <
I fl|L~ and the inequality

2k

1
STR(f) < A IVFZ2 = kX
j=1 Co

imply the existence of at least k + 1 non-constant functions {f;} such that R(f;) < A,
which contradicts the min-max characterization of the eigenvalues.

We can thus consider the set A := {0 =1ty <t; < -+ < top = || f|r~}. By the above
considerations we know that

2
Inasllze < IV AL (4.24)
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We now introduce the function g : X — R defined as

()
ey = [ matar

We notice that g € Lipy,(X), it has the same level sets of f since g(z) > g(y) if and only
if f(x) > f(y) and, by applying the co-area inequality for Lipschitz functions on metric
measure space (see for instance [6, proposition 4.1]), it holds

”VQHLI
gl 21

o(f) = d(g) < (4.25)
By the chain rule for Lipschitz functions, the fundamental theorem of calculus and the
Cauchy-Schwarz inequality we can infer

IVgllr < IVFllz2linasllze- (4.26)

Finally, we also have at our disposal the pointwise estimate

]. 2
> — 4.27
g Skf (4.27)

which can be derived by elementary considerations using the definition of g and n4.
We are now ready to conclude putting together (4.24), (4.25), (4.26) and (4.27) ob-
taining

[V fll2lnasllee <8v3_k IV £1122

199l _ g

o< gl S 1712 NoYRliEE

With these results at our disposal, it is easy to derive a higher order Buser inequality.

Theorem 4.8. Let (X,d,m) be a RCD(K,00) space. Let k € N* and let us suppose that
A, < 2. Then

o Case K =0. If m(X) < oo, then
e < 12872k hy, (X)2. (4.28)
In case m(X) = oo, we have
A < 8m2E2hy(X)2 (4.29)

o Case K <0. Ifm(X) < oo, then

14112 2
g2, 29568

by _
k<max{ 95 ' o5

k2 Rhy(X), 61952 01952 op2 ( x )} (4.30)

In case m(X) = oo, we have

3528K 2 3696
25

A < max{—
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Proof. The proof is a direct consequence of theorem 4.4, theorem 4.2 and the fact that
hi(X) < hg(X).

It is interesting that a higher order Cheeger inequality is also valid. This has been
firstly noticed in the setting of finite graphs by Lee, Gharan, and Trevisan in [37], and
then extended to compact Riemannian manifolds by Miclo [39, theorem 7] (see also [38]).
We are going to prove here that the result remains valid for RCD spaces, even of infinite
measure, remarking that some additional work is needed here with respect to the work of
Miclo, due to the lack of smoothness. The interested reader can compare our proof with
the arguments contained in [39, page 326].

Theorem 4.9. There exists an absolute constant C' > 0 such that for any metric measure
space (X,d, m) satisfying the RCD(K, o) condition, and for any k € NT such that A\, < 3,
it holds

hi(X)? < CEO ). (4.32)

Proof. Recall that on a RCD(K, o0) space the Laplacian corresponds to the generator of
the Markovian heat semigroup. We divide the proof in two cases:

o Case m(X) < oc.
Since the measure is finite, we are in position to apply directly a result of Miclo [39,
page 325] and infer the existence of an absolute constant C' > 0 such that

c
5k < A (4.33)

where
A, := min {m]ax Mo(B;) : (Bo,. .., By) are pairwise disjoint Borel sets, m(B;) > 0} ,
and A\g(B) is defined as
Xo(B) i=inf {R(f) : f € W'(X,d,m), f =0 m-ac onB f#0}.

We fix now a Borel set B C X with m(B) € (0,m(X)), A\o(B) > 0. By definition,
for any constant P > 1 there exists a non-null function f € W'2(X,d,m), f = 0
m-a.e. on B¢ such that

1/2
[x |Df>dm
2P/ Ao .
( Jx [f? dm
Setting By := {x € X : |f?(x)| >t} C B, t > 0, and reasoning as in the proof of [55,

theorem 4.6] (using the fact that f? is a BV function to which we can apply the
co-area formula) we can conclude that

fo Per(By) dt
2P/ o 4.34
o(B m(B;)dt (4.34)
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We denote by ¢a(f) := infy~g % and claim that

o2(f) > 0. (4.35)
First, observe that

. Per(By)
mf{ w(By)

. m(By) € (0, m(X) /2]} > hi(X) >0, (4.36)

where the first inequality follows by the very definition of Cheeger constant (2.30),
while the second is a consequence of the Buser’s inequality (see theorem 4.2) and the
fact that A;(X) > 0.

We now prove a lower bound on Per(B;)/m(B;), in case m(B;) > m(X)/2. Since
m(Bf) > m(B¢) > 0, we have that

Per(B,) _ Per(Bf) _ m(Bf) Per(By)
m(B;) ~ m(B)  m(B) wm(BY)

hi(X), forallt>0s.t. m(B;) > m(2X) (4.37)

The claim (4.35) follows by (4.36) and (4.37).
For any Q > 1, we can thus find a ¢ € (0, 00) such that m(B;) > 0 and

Per(Bj)

Qé2(f) = w(By)

(4.38)

Since it is trivial that
fooo Per(Bt) dt

Joo m(By) dt
by (4.34) and (4.38) it follows that for any Borel set B C X, m(B) € (0,m(X)), and
for any P, @ > 1, there exists a set By C B, m(Bj) € (0,m(X)), such that

> ¢2(f)7

Per(Bt-)
2PQ\/Ao(B) = w(By)

(4.39)
Since B C X and P,Q > 1 are arbitrary, using (4.39) we can infer that hi(X) < 44y
by the very definition (2.29) of hy(X). This last fact together with (4.33) leads to
the desired conclusion, setting C :=4/C.

Case m(X) = +oo:
We reason by approximation to prove (4.33) also for spaces with infinite measure.
Then the proof proceeds as above, and actually it is even easier.

The inequality (4.33) can be proven as follows: given a non-negligible Borel set
E C X with finite measure, we introduce the notation H; g for the heat semigroup
restricted to E:

Hyp: L*(mg) — L*(mg), Hyp(f) = xeHi(xe f),
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where mp := m(E) ! mLp is the conditional expectation of m with respect to E.
H; g is a continuous self-adjoint semigroup in L?(mg) with generator denoted by Ap
(see [39, page 325] for all the details). We also denote by
