Industrial robots are increasingly used in highly flexible interaction tasks, where the intrinsic variability makes difficult to pre-program the manipulator for all the different scenarios. In such applications, interaction environments are commonly (partially) unknown to the robot, requiring the implemented controllers to take in charge for the stability of the interaction. While standard controllers are sensor-based, there is a growing need to make sensorless robots (i.e., most of the commercial robots are not equipped with force/torque sensors) able to sense the environment, properly reacting to the established interaction. This paper proposes a new methodology to sensorless force control manipulators. On the basis of sensorless Cartesian impedance control, an Extended Kalman Filter (EKF) is designed to estimate the interaction exchanged between the robot and the environment. Such an estimation is then used in order to close a robust high-performance force loop, designed exploiting a variable impedance control and a State Dependent Riccati Equation (SDRE) force controller. The described approach has been validated in simulations. A Franka EMIKA panda robot has been considered as a test platform. A probing task involving different materials (i.e., with different stiffness properties) has been considered to show the capabilities of the developed EKF (able to converge with limited errors) and controller (preserving stability and avoiding overshoots). The proposed controller has been compared with an LQR controller to show its improved performance.

Robust state dependent Riccati equation variable impedance control for robotic force-tracking tasks

Roveda L.;
2020-01-01

Abstract

Industrial robots are increasingly used in highly flexible interaction tasks, where the intrinsic variability makes difficult to pre-program the manipulator for all the different scenarios. In such applications, interaction environments are commonly (partially) unknown to the robot, requiring the implemented controllers to take in charge for the stability of the interaction. While standard controllers are sensor-based, there is a growing need to make sensorless robots (i.e., most of the commercial robots are not equipped with force/torque sensors) able to sense the environment, properly reacting to the established interaction. This paper proposes a new methodology to sensorless force control manipulators. On the basis of sensorless Cartesian impedance control, an Extended Kalman Filter (EKF) is designed to estimate the interaction exchanged between the robot and the environment. Such an estimation is then used in order to close a robust high-performance force loop, designed exploiting a variable impedance control and a State Dependent Riccati Equation (SDRE) force controller. The described approach has been validated in simulations. A Franka EMIKA panda robot has been considered as a test platform. A probing task involving different materials (i.e., with different stiffness properties) has been considered to show the capabilities of the developed EKF (able to converge with limited errors) and controller (preserving stability and avoiding overshoots). The proposed controller has been compared with an LQR controller to show its improved performance.
2020
Extended Kalman Filter
Industrial robots
Interaction force estimation
SDRE control
Sensorless force control
Variable impedance control
File in questo prodotto:
File Dimensione Formato  
paper01.pdf

Accesso riservato

Dimensione 2.06 MB
Formato Adobe PDF
2.06 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1278486
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? ND
social impact