This paper presents the activities performed in the GARTEUR Action Group HC/AG-26 to study the acoustic and aerodynamic characteristics of small rotor configurations, including the influence of the rotor-rotor interactions. This paper will focus on comparisons between numerical activities and wind tunnel results on a small rotor provided by DLR. The wind tunnel models included a Rotor/Rotor/Pylon in isolated, tandem and coaxial configuration. The wind tunnel experiments for acoustics were performed in DLR’s Acoustic Wind Tunnel Braunschweig (AWB) and PIV test were performed in CIRA within a joint CIRA/DLR test program. For simulations, the numerical approaches from each partner are applied. The aerodynamic simulations necessary for the aeroacoustic predictions are conducted with various fidelity numerical methods, varying from lifting line to CFD. The acoustic values on the microphone positions are evaluated using Ffowcs Williams/Hawking (FW-H) formulation by all partners. The acoustic and aerodynamic predictions are compared to test data, including performance, PIV and acoustic directivity.
Acoustic and aerodynamic evaluation of DLR small-scale rotor configurations within GARTEUR AG26
Zanotti, A.;Savino, A.;Abergo, L.;Caccia, F.;Guardone, A.;
2024-01-01
Abstract
This paper presents the activities performed in the GARTEUR Action Group HC/AG-26 to study the acoustic and aerodynamic characteristics of small rotor configurations, including the influence of the rotor-rotor interactions. This paper will focus on comparisons between numerical activities and wind tunnel results on a small rotor provided by DLR. The wind tunnel models included a Rotor/Rotor/Pylon in isolated, tandem and coaxial configuration. The wind tunnel experiments for acoustics were performed in DLR’s Acoustic Wind Tunnel Braunschweig (AWB) and PIV test were performed in CIRA within a joint CIRA/DLR test program. For simulations, the numerical approaches from each partner are applied. The aerodynamic simulations necessary for the aeroacoustic predictions are conducted with various fidelity numerical methods, varying from lifting line to CFD. The acoustic values on the microphone positions are evaluated using Ffowcs Williams/Hawking (FW-H) formulation by all partners. The acoustic and aerodynamic predictions are compared to test data, including performance, PIV and acoustic directivity.File | Dimensione | Formato | |
---|---|---|---|
YINJD01-24.pdf
accesso aperto
:
Publisher’s version
Dimensione
4.19 MB
Formato
Adobe PDF
|
4.19 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.