This paper delves into the intersection of biomaterials and antibacterial agents, highlighting the importance of alginic acid-based biomaterials. We investigate enhancing antibacterial properties by functionalizing alginic acid with an ionic liquid and a potent chelating agent, tris(hydroxypyridinone) (THP). Initial functionalization with the ionic liquid markedly improves the material's antibacterial efficacy. Subsequent functionalization with THP further enhances this activity, reducing the minimum inhibitory concentration from 6 to 3 mg/mL. Notably, the newly developed dual-functionalized materials exhibit no cytotoxic effects at the concentrations tested, underscoring their potential for safe and effective antibacterial applications. These findings highlight the promising role of dual-functionalized alginic acid biomaterials in developing advanced antibacterial treatments.

Developing Advanced Antibacterial Alginic Acid Biomaterials through Dual Functionalization

Magaletti F.;Barbera V.;
2024-01-01

Abstract

This paper delves into the intersection of biomaterials and antibacterial agents, highlighting the importance of alginic acid-based biomaterials. We investigate enhancing antibacterial properties by functionalizing alginic acid with an ionic liquid and a potent chelating agent, tris(hydroxypyridinone) (THP). Initial functionalization with the ionic liquid markedly improves the material's antibacterial efficacy. Subsequent functionalization with THP further enhances this activity, reducing the minimum inhibitory concentration from 6 to 3 mg/mL. Notably, the newly developed dual-functionalized materials exhibit no cytotoxic effects at the concentrations tested, underscoring their potential for safe and effective antibacterial applications. These findings highlight the promising role of dual-functionalized alginic acid biomaterials in developing advanced antibacterial treatments.
2024
alginic acid
antibacterial activity
biomaterial
double action
ionic liquid
tris(hydroxypyridinone)
File in questo prodotto:
File Dimensione Formato  
patamia-et-al-2024-developing-advanced-antibacterial-alginic-acid-biomaterials-through-dual-functionalization.pdf

Accesso riservato

: Publisher’s version
Dimensione 4.98 MB
Formato Adobe PDF
4.98 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1276666
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact