This study introduces a straightforward synthesis method for producing a hybrid material composed of halloysite and kojic acid, which catalyzes carbon dioxide (CO2) conversion processes. Kojic acid, derived from malted rice fermentation, exhibits inherent chelating properties that facilitate the introduction of copper ions onto the material's surface. Copper ions, an economically viable alternative to noble metals, catalyze CO2 conversion reactions effectively. The hybrid catalyst was evaluated for two distinct CO2 conversion pathways: photocatalytic methane production under simulated sunlight and CO2 fixation into cyclic carbonates via epoxide reactions. The hybrid material demonstrates remarkable catalytic activity under mild conditions, achieving high conversion efficiencies at 45 degrees C for methane production and 70 degrees C for carbonate fixation at atmospheric pressure. Conversion of 31 % and 89 % were achieved for the photocatalytic CO2 reduction and the carbonate fixation, respectively. FT-IR spectra confirmed the functionalization of the material. Additionally, its organic/inorganic hybrid nature is complemented by excellent thermal stability, as studied by TGA. It enables repeated utilization, maintaining a 25 % catalytic activity for methane production and 70 % for carbonate fixation after the fourth reuse. This research highlights the potential of using naturally derived materials for sustainable CO2 mitigation.

Halloysite-kojic acid conjugate: A sustainable material for the photocatalytic CO2 reduction and fixation for cyclic carbonates production

Magaletti F.;Barbera V.;
2024-01-01

Abstract

This study introduces a straightforward synthesis method for producing a hybrid material composed of halloysite and kojic acid, which catalyzes carbon dioxide (CO2) conversion processes. Kojic acid, derived from malted rice fermentation, exhibits inherent chelating properties that facilitate the introduction of copper ions onto the material's surface. Copper ions, an economically viable alternative to noble metals, catalyze CO2 conversion reactions effectively. The hybrid catalyst was evaluated for two distinct CO2 conversion pathways: photocatalytic methane production under simulated sunlight and CO2 fixation into cyclic carbonates via epoxide reactions. The hybrid material demonstrates remarkable catalytic activity under mild conditions, achieving high conversion efficiencies at 45 degrees C for methane production and 70 degrees C for carbonate fixation at atmospheric pressure. Conversion of 31 % and 89 % were achieved for the photocatalytic CO2 reduction and the carbonate fixation, respectively. FT-IR spectra confirmed the functionalization of the material. Additionally, its organic/inorganic hybrid nature is complemented by excellent thermal stability, as studied by TGA. It enables repeated utilization, maintaining a 25 % catalytic activity for methane production and 70 % for carbonate fixation after the fourth reuse. This research highlights the potential of using naturally derived materials for sustainable CO2 mitigation.
2024
CO2
Kojic acid
Halloysite
Cyclic carbonates
Sustainable material
File in questo prodotto:
File Dimensione Formato  
patamia kojic.pdf

Accesso riservato

Dimensione 4.59 MB
Formato Adobe PDF
4.59 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1276665
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 13
social impact