Nuclear fusion reactions involving protons and boron-11 nuclei are sparking increasing interest thanks to advancements in high-intensity, short-pulse laser technology. This type of reaction holds potential for a wide array of applications, from controlled nuclear fusion to radiobiology and cancer therapy. In line with this motivation, solid ammonia borane samples were developed as target material for proton-boron (pB) nuclear fusion. Following synthesis and shaping, these samples were tested for the first time in a laser-plasma pB fusion experiment. An investigation campaign focusing on surface chemical/physical analysis was carried out to characterize such samples in terms of composition of B and H, precursors of the pB fusion nuclear reaction, thus having a key impact on the yield of the generated nuclear products, i.e., alpha particles. A follow-up experiment used an 8 J, 800 fs laser pulse with an intensity of 2 x 10(19) W cm(-2) to irradiate the targets, generating similar to 10(8) alpha particles per steradian. The alpha particle energy range (2-6 MeV) and normalized yield per laser energy of up to (6 x 10(7) J/sr) are comparable with the best previous alpha particle yields found in literature. These results pave the way for a yet unexplored category of pB fusion targets.
Ammonia borane-based targets for new developments in laser-driven proton boron fusion
Milani, Alessandro;Orecchia, Davide;Maffini, Alessandro;Margarone, Daniele
2024-01-01
Abstract
Nuclear fusion reactions involving protons and boron-11 nuclei are sparking increasing interest thanks to advancements in high-intensity, short-pulse laser technology. This type of reaction holds potential for a wide array of applications, from controlled nuclear fusion to radiobiology and cancer therapy. In line with this motivation, solid ammonia borane samples were developed as target material for proton-boron (pB) nuclear fusion. Following synthesis and shaping, these samples were tested for the first time in a laser-plasma pB fusion experiment. An investigation campaign focusing on surface chemical/physical analysis was carried out to characterize such samples in terms of composition of B and H, precursors of the pB fusion nuclear reaction, thus having a key impact on the yield of the generated nuclear products, i.e., alpha particles. A follow-up experiment used an 8 J, 800 fs laser pulse with an intensity of 2 x 10(19) W cm(-2) to irradiate the targets, generating similar to 10(8) alpha particles per steradian. The alpha particle energy range (2-6 MeV) and normalized yield per laser energy of up to (6 x 10(7) J/sr) are comparable with the best previous alpha particle yields found in literature. These results pave the way for a yet unexplored category of pB fusion targets.File | Dimensione | Formato | |
---|---|---|---|
Picciotto_2024_AppSurSci.pdf
accesso aperto
:
Publisher’s version
Dimensione
4.88 MB
Formato
Adobe PDF
|
4.88 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.