Cutin, one of the main structural components of tomato peels, is a waxy biopolymer rich in hydroxylated fatty acids. In this study, 10,16-dihydroxyhexadecanoic acid (10,16-diHHDA) was extracted and isolated from tomato peels and exploited to develop fully crosslinked polyesters as potential candidates for replacing fossil-based metal protective coatings. A preliminary screening was conducted to select the base formulation, and then a design of experiments (DoE) was used as a methodology to identify the optimal composition to develop a suitable coating material. Different formulations containing 10,16-diHHDA and other biorefinery monomers, including 2,5-furandicarboxylic acid, were considered. To this end, all polyesters were characterized through differential scanning calorimetry (DSC) and gel content measurements to determine their T-g value and crosslinking efficiency. Compositions exhibiting the best trade-off between T-g value, chemical resistance, and sufficiently high 10,16-diHHDA content between 39 and 48 wt.% were used to prepare model coatings that were characterized for assessing their wettability, scratch hardness, chemical resistance, and adhesion to metal substrates. These polyester coatings showed a T-g in the range of 45-55 degrees C, a hydrophobic behavior with a water contact angle of around 100 degrees, a good solvent resistance (>100 MEK double rubs), and an adhesion strength to steel higher than 2 MPa. The results obtained confirmed the potential of cutin-based resins as coatings for metal protection, meeting the requirements for ensuring physicochemical properties of the final product, as well as for optimizing the valorization of such an abundant agri-food waste as tomato peels.

Crosslinked Polyesters as Fully Biobased Coatings with Cutin Monomer from Tomato Peel Wastes

Ruffini E.;Cavallaro M.;Suriano R.;Turri S.
2024-01-01

Abstract

Cutin, one of the main structural components of tomato peels, is a waxy biopolymer rich in hydroxylated fatty acids. In this study, 10,16-dihydroxyhexadecanoic acid (10,16-diHHDA) was extracted and isolated from tomato peels and exploited to develop fully crosslinked polyesters as potential candidates for replacing fossil-based metal protective coatings. A preliminary screening was conducted to select the base formulation, and then a design of experiments (DoE) was used as a methodology to identify the optimal composition to develop a suitable coating material. Different formulations containing 10,16-diHHDA and other biorefinery monomers, including 2,5-furandicarboxylic acid, were considered. To this end, all polyesters were characterized through differential scanning calorimetry (DSC) and gel content measurements to determine their T-g value and crosslinking efficiency. Compositions exhibiting the best trade-off between T-g value, chemical resistance, and sufficiently high 10,16-diHHDA content between 39 and 48 wt.% were used to prepare model coatings that were characterized for assessing their wettability, scratch hardness, chemical resistance, and adhesion to metal substrates. These polyester coatings showed a T-g in the range of 45-55 degrees C, a hydrophobic behavior with a water contact angle of around 100 degrees, a good solvent resistance (>100 MEK double rubs), and an adhesion strength to steel higher than 2 MPa. The results obtained confirmed the potential of cutin-based resins as coatings for metal protection, meeting the requirements for ensuring physicochemical properties of the final product, as well as for optimizing the valorization of such an abundant agri-food waste as tomato peels.
2024
2,5-furandicarboxylic acid
agro-waste
coatings
cutin
polyester resins
File in questo prodotto:
File Dimensione Formato  
Ruffini_Crosslinked Polyesters as Fully Biobased Coatings with Cutin Monomer from Tomato Peel Wastes_2024.pdf

accesso aperto

: Publisher’s version
Dimensione 2.37 MB
Formato Adobe PDF
2.37 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1275915
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact