Time Correlated Single Photon Counting (TCSPC) has been historically subject to the count-rate vs distortion tradeoff. Several attempts to work around this limitation have been reported in the literature, either based on multichannel systems or on post-processing correction algorithms. In this work, we’ll show how distortion can be avoided by exploiting additional information on the system status acquired during the whole experiment. We’ll provide evidence that a new research line can finally combine all the advantages of TCSPC with very high speed. Starting from on-field results, we’ll present the novel technique providing design guidelines for next-generation ultrafast TCSPC acquisition systems
New constraint-less methodology to avoid distortion at any speed in time correlated single photon counting
Giulia Acconcia;Alessandro Cominelli;Gennaro Fratta;Piergiorgio Daniele;Ivan Labanca;Ivan Rech
2024-01-01
Abstract
Time Correlated Single Photon Counting (TCSPC) has been historically subject to the count-rate vs distortion tradeoff. Several attempts to work around this limitation have been reported in the literature, either based on multichannel systems or on post-processing correction algorithms. In this work, we’ll show how distortion can be avoided by exploiting additional information on the system status acquired during the whole experiment. We’ll provide evidence that a new research line can finally combine all the advantages of TCSPC with very high speed. Starting from on-field results, we’ll present the novel technique providing design guidelines for next-generation ultrafast TCSPC acquisition systemsI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.