This review delves into the dynamics of fibre-laden turbulent flows, a field that has garnered substantial attention due to its relevance in both natural and engineering contexts. The focus here is mainly on finite-size fibres, those exceeding the Kolmogorov scale, diverging from the commonly studied smaller ones. The study synthesises current understanding of the behaviour and organisation of both rigid and flexible finite-size fibres within turbulent flows, underscoring the added complexity these anisotropic particles introduce compared to their spherical counterparts. The influence of the length, the curvature and the inertia on the dynamics of rigid and flexible fibres is addressed. Fibre-based novel experimental methods, such as Fibre Tracking Velocimetry, are highlighted. Ultimately, this paper seeks to provide a clearer picture of the intricate dynamics at play in fibre-laden turbulent flows and their practical implications in various fields.
Dynamics and applications of finite-size fibre-like objects in turbulent flows
Chiarini, Alessandro;
2024-01-01
Abstract
This review delves into the dynamics of fibre-laden turbulent flows, a field that has garnered substantial attention due to its relevance in both natural and engineering contexts. The focus here is mainly on finite-size fibres, those exceeding the Kolmogorov scale, diverging from the commonly studied smaller ones. The study synthesises current understanding of the behaviour and organisation of both rigid and flexible finite-size fibres within turbulent flows, underscoring the added complexity these anisotropic particles introduce compared to their spherical counterparts. The influence of the length, the curvature and the inertia on the dynamics of rigid and flexible fibres is addressed. Fibre-based novel experimental methods, such as Fibre Tracking Velocimetry, are highlighted. Ultimately, this paper seeks to provide a clearer picture of the intricate dynamics at play in fibre-laden turbulent flows and their practical implications in various fields.File | Dimensione | Formato | |
---|---|---|---|
CHIAA02-24.pdf
accesso aperto
:
Publisher’s version
Dimensione
1.3 MB
Formato
Adobe PDF
|
1.3 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.