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A B S T R A C T

This review delves into the dynamics of fibre-laden turbulent flows, a field that has garnered substantial
attention due to its relevance in both natural and engineering contexts. The focus here is mainly on finite-size
fibres, those exceeding the Kolmogorov scale, diverging from the commonly studied smaller ones. The study
synthesises current understanding of the behaviour and organisation of both rigid and flexible finite-size fibres
within turbulent flows, underscoring the added complexity these anisotropic particles introduce compared to
their spherical counterparts. The influence of the length, the curvature and the inertia on the dynamics of rigid
and flexible fibres is addressed. Fibre-based novel experimental methods, such as Fibre Tracking Velocimetry,
are highlighted. Ultimately, this paper seeks to provide a clearer picture of the intricate dynamics at play in
fibre-laden turbulent flows and their practical implications in various fields.
1. Introduction

Turbulent flows laden with fibre-like objects have been the focus
of many studies over the last years, since suspension of anisotropic
objects in turbulent flows are often encountered in several natural en-
vironments and engineering applications [1–3]. Few examples are mi-
croplastics or non-motile microorganisms in aquatic environments [4],
marine litter in the ocean [5,6], locomotion of bacteria or planktonic
organisms [7], the formation of algae aggregates [8], and the pulp
production in papermaking [9,10]. However, the fluid–structure inter-
action mechanisms between fibres and the fluid’s degrees of freedom
are non-trivial even in the context of laminar flows. The role of fibres
in enhancing swimming/flying organism locomotion efficiency through
spontaneous symmetry breaking and resonance [11–13] phenomena is
just one relevant example underscoring their critical contribution to the
dynamic interaction between organisms and their fluid environments.

Compared to the more studied spherical particles [14,15], the
anisotropic character of fibre-like objects gives additional complexity
to their interaction with the flow. Already in the idealised case of rigid
fibres, these objects show some peculiar features, such as preferential
alignment with some properties of the flow like vorticity or strain rate
principal directions [16], and a complex motion characterised by tum-
bling and spinning [17–19]. This further complicates the interaction
between the fluid and the solid phase, and the scenario becomes even
more intricate in the case of flexible fibres; in this case the suspended
fibres have many degrees of freedom in deformation, and can even
exhibit instabilities [3].

∗ Corresponding author.
E-mail address: marco.rosti@oist.jp (M.E. Rosti).

From the numerical point of view, over the years a large number of
studies has focused on the dynamics of the dispersed phase assuming
that the suspension is dilute enough, so that the backreaction of the
solid phase to the carrier fluid can be safely neglected. Based on these
hypothesis, one-way coupling approaches (i.e. the fluid is not affected
by the presence of the solid phase) are used and the problem is largely
simplified. In case of rigid particles with ellipsoidal shape that are
sufficiently small to be modelled as evolving in a Stokes flow, Jeffery
and Filon [20] derived an analytical expression for the fluid torque
acting on the particle. This expression has been later generalised to
other shapes, and has been largely exploited for a large variety of
problems, including studies on the rheology of suspensions in low
Reynolds number conditions [21], and on the dynamics of dispersed
fibres in turbulent flows [16].

Despite the relevance of these studies, the approaches based on
the Jeffrey’s solution are justified only under the strict assumption
of small and rigid objects. The Stokes approximation, indeed, holds
only when the particle Reynolds number is very low and the flow
around the particle is smooth. Moreover, when considering relatively
high concentrations of fibres, one has to consider the two-way coupled
problem: the fibres are transported (and potentially deformed) by the
flow and, in turn, they modify the surrounding flow due to the no-slip
condition at their surface [14,15]. In this sense, large steps towards
a comprehensive understanding of the complex interaction between
rigid/flexible fibres and the fluid phase have been performed thanks to
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the increase of the supercomputer’s power, which enables to resolve the
flow around each object by means of suitable techniques, e.g. immersed
boundary methods [22–26]. Also, in many applications fibres are flex-
ible. In this case, the way they interact with the flow is not trivial and
requires a more complex modelling approach as they may experience
large deformations, and force the flow at their characteristic scales and
frequencies. For small fibres the most common modelling approach
relies on the slender body theory; see for example the work by Olivieri
et al. [27] and the works by Young and Shelley [28], Wandersman et al.
[29], Quennouz et al. [30], which show that the dynamics of the fibres
is largely influenced by the flow-induced buckling instabilities.

The flow modulation by solid/flexible non spherical objects in non-
dilute conditions has started to be studied over the last few years [see
for example [27] and references therein]. When the concentration of
the fibres is large enough the flow shows a substantial departure from
the classical phenomenology observed for a purely Newtonian fluid. In
homogeneous isotropic turbulence, for example, the presence of the
solid phase interacts with the classical energy cascade and modifies
the scale-by-scale energy redistribution [31]. In turbulent channels,
instead, the presence of non spherical objects modifies the mean flow
and the organisation of the near-wall velocity fluctuations, potentially
leading to a reduction of the friction drag [23].

From a complementary perspective, recent studies have focused on
the possibility of exploiting fibre-like objects to measure the proper-
ties of turbulent flows [25,32–34]. Rosti et al. [32] and Rosti et al.
[34] considered flexible fibres and found that they present a different
flapping motion depending on their flexibility. They observed that in
some regimes, fibres may behave as a proxy of turbulent eddies of com-
parable size, and enable the measurement of two-point flow statistics,
by simply tracking the motion of the end-to-end fibres. Following the
seminal work by Cavaiola et al. [25], Brizzolara et al. [35] introduced
a novel experimental technique, named ‘‘Fibre Tracking Velocimetry’’,
which measures the properties of turbulence at a fixed length scale, by
following the translation and rotation of rigid fibres, extending already
existing techniques based on particle tracers.

The aim of this contribution is to review the last progresses on
turbulent flows laden with fibre-like objects. This review comes after
the works by Voth and Soldati [16] and du Roure et al. [3], which have
mainly considered small fibres. To differentiate, here we mainly focus
on finite-size fibre-like objects, i.e. anisotropic particles with size larger
than the Kolmogorov scale. Some works dealing with sub-Kolmogorov
fibres are however considered for comparison purposes. The specific
objectives of this work are: (i) to briefly describe how finite-size fibre-
like objects behave in a turbulent flow and how they are distributed,
focusing on the effect of their length, shape and inertia, and (ii) to
review how solid/flexible fibre-like objects can be used as tools to
control the flow, or to extract flow features.

2. How are fibre-like objects organised in turbulent flows?

2.1. Rigid objects

The dynamics of anisotropic particles moving within a flow is rich
and complicated. Depending on their size and inertia, these particles
may rotate, tumble, spin, and preferentially locate themselves in spe-
cific regions of the flow. The term ‘tumbling’ denotes the orientational
dynamics of the particles’ symmetry axis, while ‘spinning’ refers to
the rotation of the particles around their own symmetry axis; see
Fig. 1. Anisotropic particles have a preferential direction that influences
their alignment, their overall dynamics, and their ability to cluster in
particular regions of the flow.

In the case of rigid particles with ellipsoidal shape and which are
sufficiently small to be considered to evolve in a Stokes flow, an
analytical expression for the fluid torque acting on the particle was
originally derived by Jeffery and Filon [20]. This formulation has been
then generalised to other shapes and widely exploited in a variety of
105 
Fig. 1. Sketch of an anisotropic particle. 𝛺𝑠 refer to the spinning rotation rate, i.e. the
component of the rotation rate around the symmetry axis. 𝛺𝑡 refer to the tumbling
rotation rate, i.e the component of the rotation rate perpendicular to the symmetry
axis.

problems to characterise the rheology of suspensions [see e.g. [21]].
Several works have indeed used this model to characterise the dynamics
of small dispersed fibres in turbulent flows [see [16] and references
therein]. However, the approach based on Jeffery’s solution does not
apply if the Reynolds number at the fibre length scale is not sufficiently
small or if the flow surrounding the fibres is not smooth. The dynamical
behaviour of fibres with length well within the inertial range of scales,
in fact, is far less understood and has only recently been considered by a
few experimental [e.g., [17,19,36]] and numerical [e.g., [22]] studies.

2.1.1. Homogeneous isotropic turbulence
The translational and rotational motion of rigid fibres in turbulent

flows depends on their shape and length, and on the ratio between
their characteristic length and that of the flow. This problem has been
extensively studied by Shin and Koch [37]. They performed direct
numerical simulations to study the motion of fibres in homogeneous
isotropic turbulence. They used the slender-body theory [38] on neu-
trally buoyant fibres, and solved the fluid–structure interaction problem
by dividing the flow region around a single fibre in inner and outer
region by means of an asymptotic expansion (see their paper for more
details). They varied the length of the fibres in the 0.3 ≤ 𝐿∕𝜂 ≤ 59
range (𝜂 is the Kolmogorov scale) to consider fibres smaller and larger
than the Kolmogorov scale. They observed that fibres with 𝐿 ≪ 𝜂
translate like fluid particles and rotate like fluid material lines [39].
The fibre acceleration 𝑎 variance matches the acceleration variance
of a fluid particle, and the fibres rotation rate depends on the local
velocity derivatives (see Fig. 2). When the fibres length increases,
instead, their motion does not follow the local properties of the flow.
Their translational and rotational motions slow down, as the fibres
become more insensitive to the fast small-scale eddies. This results into
a decrease of the fibre acceleration and rotation-rate variances (see
Fig. 2).

Parsa et al. [41] report the first three-dimensional experimental
measurements of the orientation dynamics of small rodlike particles
in a turbulent flow. In their study they considered small ellipsoidal
particles with length of 𝐿 = 2.6𝜂 and 𝐿 = 4.8𝜂, and observed how the
rotation rate changes with the aspect ratio 𝜆 = 𝐿∕𝑑 of the ellipsoid;
𝑑 is the minor length of the particles. They observed a quite good
agreement of their experimental results with the model of Jeffery and
Filon [20]. The only discrepancy they found was associated with the
tails of the probability density function of the squared rotation rate,
suggesting that the finite size of the fibres influences only the rare
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Fig. 2. Left: the fibre acceleration 𝑎 variance normalised with the acceleration variance of a fluid particle as a function of the fibre length 𝐿. The orange circles are from the
direct numerical simulations of [37] and refer to different 𝑅𝑒𝜆. The blue symbols denote experimental data for spherical particles with diameter 𝐿, from [40]. Right: variances
f the fibre rotation rate as a function of the fibre length. 𝛤𝜂 is the Kolmogorov shear rate. Green and grey circles denote results for the initial and long-time (after the fibre
rientation has become correlated with the turbulent flow) variances respectively. 𝛤𝜂 = (𝜖∕𝜈)1∕2 is the Kolmogorov shear rate. (For interpretation of the references to colour in this
igure legend, the reader is referred to the web version of this article.)
ource: Adapted from [37].
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ut intense events for 𝐿∕𝜂 ⪅ 5. Tracking the motion of the fibres,
hey observed that their rotation rate does not increase when fibres are
aught in a vortex, since they align with the vorticity. This reflects the
endency of anisotropic particles to become aligned with the velocity
radients of the flow. They also found that the mean square rotation
ate of elongated fibres with 𝜆 ≫ 1 immersed in a turbulent flow is
uch smaller than that of randomly oriented fibres. This is because

he alignment of the fibres with the vorticity reduces the variance
f the rotation rate, as only the vorticity perpendicular to the fibres
ontribute to their rotation rate. They also found that for anisotropic
articles the probability density function of the square rotation rate has
arger tails compared to spherical particles. In fact, a small variation
f the orientation of the fibres with respect to the velocity gradient
ensor contribute to additional large fluctuations, resulting to high
otation rate events. Later, Chevillard and Meneveau [42] numerically
eneralised the work of Parsa et al. [41] and considered the orientation
ynamics and rotation rate of general triaxial–ellipsoidal particles,
.e. particles with major semi-axis of length 𝑑1, 𝑑2 and 𝑑3 with 𝑑1 ≠ 𝑑2 ≠
3, in homogeneous isotropic turbulence. However, they considered a
eneralisation of Jeffery’s equations reported in Junk and Illner [43]
nd, thus, their analysis is valid only for particles that are smaller than
he Kolmogorov scale. They found that triaxial ellipsoids that are very
ong in one direction, very thin in another and of intermediate size in
he third one, exhibit reduced rotation rates around the major axis,
ike for rods. In contrast, they exhibit increased rotating rates in the
irection with the smallest thickness, like for axisymmetric discs.

The dependence of the rotation of anisotropic particles on their
hape has been investigated by Byron et al. [44]. They considered
ylinders and spheroids, i.e. shapes that are characterised by an axis of
ymmetry and two other axes of equal lengths. The authors used both
umerical and analytical calculations based on the Jeffery’s approx-
mation, and laboratory experiments. They considered particles with
ize that ranges between the dissipative and the inertial subrange of
urbulence, with 𝐿 > 𝜂.

The experiments validate their numerical simulations, meaning that
he dependence of the particles’ rotation on their shape does not change
ith the particle size. They observed that the symmetry axis of the rods

ollows closely the second strain eigenvector 𝒆2 and vorticity, while the
ymmetry axis of the discs tumbles in the plane spanned by the strain
igenvectors, 𝒆1 and 𝒆3. Similar results for rods have also been reported
y other authors; see for example Ni et al. [45] and the experimental
ork of Sabban et al. [46] for fibres with 𝐿 ≈ 2𝜂. Byron et al. [44]

ound that rods mainly spin around their own symmetry axis at a rate
hat is half of the vorticity, while discs tend to tumble more than they
pin. However, despite this difference, they found that the variance of
he total rotation rate does not change with the particle shape, meaning
hat the total energy the particle subtracts from the flow to rotate

emains the same.
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The tumbling rotation rate of fibre-like objects has been extensively
nvestigated [17–19]. Parsa and Voth [17] specifically investigate the
umbling rotation rate of rods with lengths within the inertial range
f turbulence. They consider fibres with diameter 𝑑 smaller than or
qual to the Kolmogorov scale, and length 𝐿 in the 2.8 ≤ 𝐿∕𝜂 ≤
72.9 range. By using dimensional arguments, they predicted a scaling
law that has been confirmed by their experimental measurements. In
particular, they assumed that long rods can only rotate and align due
to the action of eddies with comparable size. Based on this hypothesis,
they found that, for rods with length scale 𝐿, the mean square rotation
rate due to tumbling (𝜴𝑡) scales like 𝜏−2𝐿 , where 𝜏𝐿 is the time scale of
eddies of size 𝐿, being defined as 𝜏𝐿 = 𝐿∕𝑢𝐿 = 𝐿∕ (𝐿𝜖)1∕3 where 𝑢𝐿
is the velocity at length 𝐿 and 𝜖 is the mean energy dissipation rate.
Therefore, their dimensional argument gives

⟨

𝛺𝑡,𝑖𝛺𝑡,𝑖
⟩

∼ 𝐿−4∕3 for 𝐿 in
the inertial range. Interestingly, they found a pretty good agreement
between their predicted scaling and the results obtained from their
experiments (see the left panel in Fig. 3). Their results, for the first
time, pave the way for using long rods to access the spatial structure
of the flow in the inertial range of turbulence, as discussed later in
Section 3.2. Later, Bordoloi and Variano [18] considered particles with
cylindrical shape and experimentally investigated their rotation rate in
homogeneous isotropic turbulence. They considered elongated particles
with maximum size within the inertial range, i.e. with 16 ≤ 𝐿∕𝜂 ≤
67. However, unlike the previous work by Parsa and Voth [17], they
considered particles with radial dimension larger than the Kolmogorov
scale, i.e. 16 ≤ 𝑑∕𝜂 ≤ 66. Based on similar dimensional arguments
as Parsa and Voth [17], they proposed a scaling law for the mean square
total rotation (spinning + tumbling) rate 𝜴 = 𝜴𝑡 +𝜴𝒔. They observed
that in their space of parameters the scaling law is not based on 𝐿,
but on 𝑑𝑒𝑞 , where 𝑑𝑒𝑞 is the diameter of the volume equivalent sphere,
i.e. ⟨𝛺𝑖𝛺𝑖⟩𝜏2𝜂 ∼

(

𝑑𝑒𝑞∕𝜂
)−4∕3; see the right panel of Fig. 3. According to

their discussion, the difference with the previous scaling is due to the
fact that for fibres with 𝑑 ≪ 𝜂, the radial dimension does not influence
the rotation rate of the particle, while for 𝑑 ≫ 𝜂 it does, as it responds
to the turbulent structures of the flow. The fact that this scaling law
depends on 𝑑𝑒𝑞 and not on 𝐿 or 𝑑, suggests that the rotation rate of
anisotropic particles with size within the inertial range does not depend
on their shape, confirming the results by Byron et al. [44] for sub-
Kolmogorov particles. Later, Bounoua et al. [19] addressed the results
of Parsa and Voth [17] and Bordoloi and Variano [18], and investigated
the discrepancies of their proposed scaling laws. They experimentally
studied the role of the aspect ratio of the fibres on their rotation rate,
and found that the fibre inertia is at the origin of the discrepancy.
They considered cylindrical rigid fibres and varied the length within
the inertial range, considering aspect ratios 𝜆 in the 2.5 ≤ 𝜆 ≤ 80
range. They found that the variance of the fibres tumbling rate follows
⟨𝛺𝑡𝛺𝑡⟩∼ 1∕(1+𝑆𝑡2𝑡 )𝜏

2
𝜂 (𝜂∕𝐿)

4∕3, where 𝑆𝑡𝑡 is the tumbling Stokes number
√

𝜈∕𝜖 is the Kolmogorov time scale. When 𝑆𝑡 ≪ 1 the slender
and 𝜏𝜂 = 𝑡
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Fig. 3. Mean square rotation rate of long rods as a function of the rod length. Left: case with 𝑑 ≪ 𝜂 with data taken from [17]. Right: case with 𝑑 ≫ 𝜂, with data taken from [18].
𝑑 is the diameter of the particle, 𝐿 is the length, while 𝑑𝑒𝑞 is the diameter of the volume equivalent sphere. In the right panel the blue triangles are for 𝜆 = 4, but replotted with
respect to the cylinder’s length and width instead of its volume-equivalent spherical diameter.
Fig. 4. Dependence of the tumbling rate of cylindrical solid fibres on the tumbling Stokes number 𝑆𝑡𝑡. Data taken from [19]. The green diamonds are the results from [17], while
the blue square is from [18].
Fig. 5. Left: Root-mean-square ratios of fluctuating fibre (𝑣′𝑝) and fluid (𝑣′𝑓 ) velocities as a function of the fibre Stokes number. 𝑉𝑠 is the still air settling velocity defined as
𝑠 = 𝜌2𝐷 𝑔 (log(2𝛽) + 0.193) ∕(16𝜇) [see [36]]. The red circles are data from Good et al. [47]; the blue circles are data from Sabban and van Hout [48]; the green circles are data
rom Kuperman et al. [36]. Right: Normalised variance of the tumbling rate as a function of the Stokes number. For additional details on the experimental points we refer the
eader to figures 5 and 13 of Kuperman et al. [36]. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
ource: Figures adapted from [36].
ody theory is retrieved and ⟨𝛺𝑡𝛺𝑡⟩∼ (𝐿∕𝜂)4∕3. When 𝑆𝑡𝑡 ≫ 1, instead,
the variance of the tumbling rate is smaller as the forcing evolves on
a much smaller time scale than the response time of the fibre. By
using this scaling law they observed that both their measurements and
those from Parsa and Voth [17] and Bordoloi and Variano [18] collapse
pretty well; see Fig. 4.

The dynamics of rigid, heavy fibres change with their inertia. Ku-
perman et al. [36] experimentally detailed the effects of the inertia on
the fibre dynamics in isotropic turbulence. They considered fibres with
a Stokes number between 1 ≤ 𝑆𝑡 ≤ 32.5 and length larger than the
Kolmogorov scale in the 3.6 ≤ 𝐿∕𝜂 ≤ 17.3 range. They observed that
when increasing the inertia, the response of the fibres to the fluctuating
fluid velocities decreases (see Fig. 5). This leads to a modification of
the probability density functions of the fibre centroid velocity, which
becomes narrower as the inertia increases. Regarding the tumbling
rate, instead, they found that it does not decrease monotonically with
increasing 𝑆𝑡, but found a peak at 𝑆𝑡 ≈ 4 (see Fig. 5). This is due to the
107 
fact that the total fibre rotation is comprised of both the spinning and
tumbling. The ratio of spinning and tumbling rate depends also on the
ability of the fibres to align with the vorticity vector. For small 𝑆𝑡, the
fibre quickly aligns with the vorticity, and therefore its tumbling rate is
rather small. When 𝑆𝑡 increases, instead, the fibre is less able to align
with the vorticity, and therefore the tumbling rate increases. For large
𝑆𝑡, however, the tumbling rate decreases again as fibres with large 𝑆𝑡,
even if they do not align much with the vorticity field, respond slowly
to the fluctuating field.

The alignment of rigid fibres with specific flow quantities has been
investigated by Aswathy and Rosti [49], in the context of finite-size
fibres suspended in a viscoelastic triperiodic turbulent flow. Their study
is based on direct numerical simulations coupled with an immersed
boundary method to deal with the fluid–solid interaction. They con-
sidered fibres with 𝐿 in the inertial range of scales and 𝐿 ≫ 𝑑,
and varied the Deborah number 𝐷𝑒 = 𝜏𝑝∕𝜏𝑓 (it is a measure of the
polymeric elasticity, with 𝜏 being the polymeric relaxation time and
𝑝
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𝜏𝑓 the turnover time of the largest eddies of the flow) in the 0.3 ≤
𝑒 ≤ 7 range; the Reynolds number is fixed at a value of 𝑅𝑒𝜆 ≈ 310.
ike for fibres moving in a Newtonian flow, the authors found that
hey preferentially align with the intermediate eigenvector of the strain
ate. For denser-than-the-fluid fibres they observed that the fibres are
nti-aligned with the most and least extensional directions.

.1.2. Turbulent channel flow
We now move to the behaviour of rigid fibres in turbulent chan-

el flows. Several studies have investigated the dynamics of rigid
nisotropic particles/fibres moving in a turbulent wall bounded flow.
or example, we refer the reader to [10,50–57] for numerical simu-
ations of a turbulent channel flow, to [58,59] for experiments of a
urbulent channel flow laden with fibres, to [60] for experiments of
fibre laden turbulent pipe flow, to [61,62] for experiments of dilute

ibre suspension in a turbulent channel with a backward-facing step,
nd to [63] for experiments of discs and fibres in a turbulent boundary
ayer.

Marchioli et al. [10] investigated the dispersion of rigid, highly
longated fibres in a turbulent channel flow at a friction Reynolds
umber of 𝑅𝑒𝜏 = 𝑢𝜏ℎ∕𝜈 = 150; here ℎ is the channel half height
nd 𝑢𝜏 =

√

𝜏𝑤∕𝜌 is the friction velocity expressed in terms of the
verage wall shear stress 𝜏𝑤 and the density 𝜌. In their work, fibres are

treated as prolate ellipsoidal particles with aspect ratio 1 ≤ 𝜆 ≤ 50;
here 𝜆 = 𝐿∕𝑑, with 𝐿 and 𝑑 being the semimajor and semiminor
xes. According to their model, the fibre size is always assumed to
e smaller than the Kolmogorov length-scale. The maximum length of
he fibres is varied between 0.7 ≤ 𝐿+ ≤ 36, where the ⋅+ superscript

denotes quantities made dimensionless with 𝑢𝜏 and 𝜈. The density of
the fibres 𝜌𝑝, instead, has been varied between 10 ≤ 𝜌𝑝∕𝜌𝑓 ≤ 103;
𝜌𝑓 is the fluid density. No back-reaction of the fibres on the flow
has been considered. As shown in figure 1 of their paper, Marchioli
et al. [10] found that close to the channel centre the fibres are ran-
domly oriented, as the velocity gradients are rather weak. Close to the
wall, instead, the velocity gradients are strong, and the fibres mainly
align with the wall. Marchioli et al. [10] analysed the mean direction
cosines of the fibres for different values of the inertia and of the
aspect ratio, to investigate the fibre orientation statistics. They found
that the alignment with the streamwise direction becomes stronger
for longer fibres, but weaker for particles with larger inertia. They
observed that the fibres are aligned with the mean flow at most 50%
of the time, in agreement with the previous works by Zhang et al. [50]
and Mortensen et al. [64]. They argued that the near-wall alignment
imposed by the streamwise fluctuations, though statistically probable,
is unstable and is not maintained for long times. They also observed
that the fibre alignment with the spanwise direction decreases with
their inertia [64], as spanwise velocity fluctuations are rather weak.
Overall, they observed that longer fibres are more frequently aligned
with the wall, suggesting a preferred seesaw-like rotation characterised
by an alternate rotation of the fibre tips as the fibres are advected
downstream (see their paper for further details).

Similar results have been found by Do-Quang et al. [22], that
considered rigid finite-size fibres (rods) in a turbulent channel flow at
𝑅𝑒𝜏 = 180. They varied the length of the fibres in the 3.2 ≤ 𝐿+ ≤
24 range, and considered two different fibre-to-fluid density ratios,
i.e. 𝜌𝑝∕𝜌𝑓 = 1 and 1.2. Unlike Marchioli et al. [10], Do-Quang et al.
[22] also modelled the back-reaction of the fibres on the flow. The
authors found that fibres accumulate mainly near the wall, at a distance
of the order of the fibre length. Also, they found that the case with
larger inertia shows a stronger accumulation indicating that there is
some turbophoresis effect [15]. By following one fibre, they showed
that this near-wall concentration is because, most of the time, the
fibres are trapped in the high-speed streaks of streamwise velocity that
populate the near-wall region [65]. They observed that the fibres move
at roughly constant speed and angular velocity during most of the time,

but sometimes they abruptly change direction of motion and rotation. a
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In fact, in high-speed streaks the flow moves downwards and pushes
the fibres towards the wall. Once the fibres interact with the viscous
sublayer, or collide with the wall, they face a large torque and are
thus pushed upwards. However, the upward motion is balanced by
the downward motion of the fluid in the high-speed streaks, and the
fibres remain trapped in the high-speed streaks until they reach an
ejection-like region of the flow.

The dynamics of fibres changes with their Stokes number and with
their length. Shaik et al. [58] and Shaik and van Hout [59] experimen-
tally investigated the dynamics of straight rigid fibres freely moving in
a fully developed turbulent channel flow at a friction Reynolds number
of 𝑅𝑒𝜏 ≈ 435. They varied the Stokes number and the length of the
fibres in the 0.02 ≤ 𝑆𝑡+ ≤ 0.34 and 16 ≤ 𝐿+ ≤ 66.8 portion of
the parameter space, and found that the wall-normal distribution of
the fibres and their dynamics changes with 𝑆𝑡 and 𝐿. Very close to
the wall they found that the fibre concentration is low; a depletion
layer arises in the immediate vicinity of the wall, with a width that
decreases as 𝑆𝑡 increases. In the buffer layer, 14 ≤ 𝑦+ ≤ 24, they
ound that except for the largest 𝐿, the fibres’ velocity exceeds the
ean fluid velocity as they preferentially accumulate in high speed

egions [22]. Beyond the buffer layer, instead, they observed that the
ibres lag the fluid. They report that the lag increases with 𝐿 due to the
ncreased drag. Their experiments also showed that 𝐿 influences the
ntermittency of their velocity signal. In fact, longer fibres exhibit an
ncrease probability of extreme transverse and wall-normal velocities,
s they interact more effectively with larger and more energetic flow
tructures. Similarly, they observed that 𝐿 influences the tumbling rate,
ith longer fibres tumbling at a higher rate that shorter ones. When

ooking close to the wall, they observed that irrespective of their length
ibres preferentially align with the streamwise direction in agreement
ith the results of [10], leading to a substantial lack of fibre–wall

nteractions.
Several works investigated how the dynamics of anisotropic rigid

articles in turbulent channels is influenced by their shape. Zhao
t al. [55] observed that the statistics of the particles rotation, their
oncentration and their preferential sampling vary with the shape of
he particles and do not depend only on their inertia. Indeed, a different
hape modifies the preferential alignment of the particles, and therefore
he way they respond to the fluid velocity fluctuations. For example, as
result of the different alignment, they found that at the channel centre
blated particles tend to rotate orthogonally to their symmetry axis,
hile prolate particles rotate around their symmetry axis. Baker and
oletti [63] experimentally addressed the influence of the asymmetric
hape of rigid particles on their dynamics, investigating the behaviour
f negatively buoyant discs and fibres in a turbulent boundary layer
t a friction Reynolds number of 𝑅𝑒𝜏 ≈ 620. For both discs and fibres
hey fixed the major axis length at a value of 𝐿+ ≈ 50, leading to a
riction Stokes number of 𝑆𝑡+ = (10) for both cases. They found that
rrespective of the shape, non spherical particles oversample high-speed
luid regions close to the wall [22]: despite their significant inertia,
on spherical particles exceed the mean fluid velocity in the vicinity
f the wall. They found that the shape of the particles influences
heir preferential alignment, modifying thus their response to the fluid
elocity fluctuations. Fibres tend to align mostly in the streamwise
irection, while discs mostly align their symmetry axis with the wall-
ormal direction, with what they referred to as a nose-up configuration.
hey observed that the this alignment is more stable for fibres than
or discs; the former undergo strong tumbling near the wall, while
he latter wobble around their wall-normal preferential direction. As a
esult of their different alignment, although having the same relaxation
ime, they observed that fibres and discs respond differently to the
urbulent fluctuations, with the latter being slower. Based on this, they
rgued that for anisotropic particles the actual response time does
ot depend on the Stokes number only, but also on the preferential

lignment of the particles and, therefore, on their shape.
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Fig. 6. Behaviour of the bending deformation of finite-size flexible fibres in a turbulent flow. Left: Evolution of the mean curvature 𝜅 as a function of the fibre length. Blue line
refers to the polymeric regime, red line to the turbulent regime and green line to the intermediate one. Right: evolution of the maximum mean curvature 𝜅max normalised with 
s a function of the fibre stiffness 𝛾. The turbulent regime is at the left side of the left vertical line, while the polymeric regime is at the right side of the right vertical line. (For
nterpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
ource: Figure adapted from [68].
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The dynamics of the fibres also depends on their symmetries. Alipour
t al. [66] and Alipour et al. [67] experimentally investigated the
nfluence of the curvature on the dynamics of long and rigid slender
ibres (𝐿∕𝐷 ≫ 1) freely moving in a turbulent channel flow. They fixed

and varied the friction Reynolds number of the channel between
80 ≤ 𝑅𝑒𝜏 ≤ 720 to account for different fibre-to-fluid length scale
atios. Like for straight fibres, they observed that close to the wall non
xisymmetric fibres preferentially sample high-speed regions, and that
his tendency increases with the Reynolds number. They related this
ith their interaction with the coherent structures of wall turbulence;
s 𝑅𝑒 increases, indeed, the sweep events close to the wall intensify
eading to stronger wall-ward fluxes. Their results show that the curva-
ure of the fibres influences the orientation of the near-wall fibres. For
ll cases rigid fibres tend to align with the major axis belonging to a
lane parallel to the wall. Fibres with large curvature, however, tend to
lign their preferential axis with the streamwise direction. Fibres with
ow curvature, instead, are more sensitive to local flow conditions and
re therefore less aligned with the streamwise flow direction.

.2. Flexible objects

This section delves into the underexplored dynamics of flexible
ibres in fluids, highlighting two key environments: homogeneous
sotropic turbulence and turbulent channel flows. Initial studies, such
s Gay et al. [68], categorise fibre behaviour by introducing length
cales that differentiate between rigidity and flexibility, focusing on
eformation without considering extensibility or torsion. Further, Dotto
nd Marchioli [69]’s work on turbulent channels reveals how fibre
rientation and concentration are influenced by inertia and proximity
o walls. These insights lay the groundwork for our investigation into
lexible fibre motion in fluid flows.

.2.1. Homogeneous isotropic turbulence
We start considering homogeneous isotropic turbulence. One of the

irst works to appear regarding flexible fibres is the one by Gay et al.
68]. They focused on the characterisation of the fibre deformation,
hat is the first step to understand their complex dynamics. To simplify
he analysis, they start focusing on bending deformations only, ne-
lecting the extensibility and the torsion of the fibres. When analysing
he dynamics of flexible fibres in turbulent flows, three length scales
an be introduced, i.e. the length of the fibre 𝐿, the elastic length
𝑒 which defines whether the fibre can be considered rigid (𝐿 ≤ 𝓁𝑒)
r flexible (𝐿 ≥ 𝓁𝑒), and the integral scale of the turbulent flow .
ased on these lengths, several regimes are possible. Considering only
he case of flexible fibres (𝐿 > 𝓁𝑒) that are much longer that the
issipative Kolmogorov scale (𝐿 ≫ 𝜂) three regimes are possible. In
he first regime, the integral scale is much smaller than the elastic
ength (𝐿 > 𝓁𝑒 ≫ ) and the fluid forcing on the fibre is uncorrelated

t the scale of the fibre deformation. This regime is referred to as
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olymer regime. In the second regime, the fibre length lies in the
nertial range ( ≫ 𝐿 > 𝓁𝑒), and the forcing is correlated along the
ibre. This case is called turbulent regime. Eventually, the third and
ntermediate regime (𝐿 >  > 𝓁𝑒) is referred to the case for which the
ibres experience a forcing correlated at small scales, but uncorrelated
t larger scales. Gay et al. [68] studied the fibre deformation in the
ifferent regimes both experimentally and numerically. However, due
o the prohibitive computational cost, they did not solve the full two-
ay coupling between the elastic fibre and the turbulent flow by
irect numerical simulation (DNS), but used the so-called Kinematic
imulation Method [70], which is based on the use of random Fourier
odes. They defined the mean value of the fibre curvature 𝜅 as

𝜅 = 1
𝐿 − 2𝓁𝑒 ∫

𝐿−𝓁𝑒

𝓁𝑒

⟨𝜅(𝑠)⟩d𝑠

o remove the effects from the fibre extremities where the curvature
ncreases. When 𝐿 ≤ 𝓁𝑒 the mean curvature is taken as 𝜅 at 𝑠 = 𝐿∕2.
hey found that the dependence of 𝜅 on the fibre length 𝐿 depends
n the regime; see Fig. 6. In the polymer regime, the mean curvature
ncreases with the fibre length, until it saturates to a value that does not
epend on 𝐿. For the turbulent and intermediate regimes, instead, the
ean curvature increases with 𝐿 up to a maximum and then decreases

or longer fibres. Therefore, due to the forcing correlation, long fibres
re statistically less curved than shorter ones. They argued that this
s due to a combined effect of viscous effects and inextensibility of
he fibres (we refer the interested reader to their work for further
etails). Also, they investigated the dependence of the maximum mean
urvature 𝜅max as a function of the fibre rigidity 𝛾, varying 𝓁𝑒 from the
olymeric regime to the turbulent one. They found two different power
aws (see Fig. 6), that well correlate with their dimensional analysis.

Besides the mean curvature, also the maximum curvature expe-
ienced by the fibres changes with 𝐿. This has been investigated

in Olivieri et al. [27] by means of a massive DNS study where the fluid–
solid interaction is dealt with an Immersed Boundary Method [71].
Here the authors considered both the case of iso-dense and denser-than-
the-fluid fibres. Unlike Gay et al. [68], they did not introduce the elastic
length scale, and based their discussion on a dimensional analysis of
the dynamical equation of the fibres. In doing this, they found two
different regimes depending on 𝜅max𝐿: for rigid fibres (𝜅max𝐿 ≫ 1)
the maximum curvature scales as 𝛾−1, while for sufficiently flexible
ones the maximum curvature scales as 𝛾−1∕3. They found that their
data collapse pretty well with the theoretical scaling, with only small
deviations for the denser-than-the-fluid fibres in the transition region
between the two regimes; see Fig. 7.

In the same work, Olivieri et al. [27] characterised also the collec-
tive dynamics of flexible fibres, and considered the local concentration
of the suspension to investigate the presence of clustering phenom-
ena [see [15], for spherical particles], which is relevant for applications
in several fields [1,8]. To measure the tendency of fibres to accumulate
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Fig. 7. Maximum fibre curvature as a function of the normalised bending stiffness for iso-dense fibres (left) and denser-than-the-fluid fibres (right).
Source: Adapted from [27].
Fig. 8. Radial distribution function for iso-dense fibres (left) and denser-than-the-fluid fibres (right). Top is for short fibres, bottom is for long fibres.
Source: Adapted from [27].
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they used the radial distribution function RDF (or pair correlation),
which indicates the probability of having a pair of particles at a given
mutual distance. The RDF, thus, highlights the presence of accumula-
tion at particular length scales. They found that for iso-dense fibres
the clustering effect is essentially negligible for all the values of the
fibre length and bending stiffness, highlighting the role of the inertia
in the formation of clusters [72]. In contrast, for the denser-than-the-
fluid fibres they found a richer phenomenology; see Fig. 8. First, they
observed that the accumulation increases when decreasing the bending
stiffness. According to the authors, this occurs as more flexible fibres
adapt more easily to the local flow structure and therefore sample more
frequently the regions of the flow with lower vorticity as point-particles
do. Also, the highest peak in the RDF is found for long fibres. The
authors argued that clustering is favoured in case of larger inertia and
larger flexibility.

Some works have focused on the process of fibre fragmentation in
turbulent flows. As an example, here we consider the work of Allende
et al. [73]. They numerically investigate the fragmentation process of
small inextensible inertialess fibres in homogeneous isotropic turbu-
lence. They considered very thin fibres that can be approximated as
inextensible Euler–Bernoulli beams immersed in a viscous fluid, with
a negligible inertia. The backreaction of the fibres on the fluid is
neglected. They considered 𝐿 ≪ 𝜂; this allows them to simulate the
motion of the fibres by simply evolving in time the position of their
centre of mass which is treated as a tracer. They then recover the fluid
velocity along the fibre (and the resulting force) by assuming that the
distribution is linear and exploiting the fluid velocity derivative tensor.
They focus on tensile and flexural failures, i.e. failures that occur be-
cause the internal tension is higher than a given threshold and because
the curvature of the fibre exceeds a certain threshold. They found that
for both cases the break up occurs when the fibre runs into a flow
region with large strain where it is either stretched above the internal
cohesive forces or compressed such that it buckles and fractures under

the excessive bending. In their analysis, they observe that the tensile s
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failure always occurs when the fibre is stretched by the flow, and has a
straight configuration. In this case, the tension is maximum at its centre
and the break up produces two fragments of equal size. For flexural
failure, instead, they observed a more intricate scenario. In this case
the fragmentation occurs when fibres develop a buckling instability
and the size of the fragments depends on the properties of the most
unstable buckling mode. By using their simulations they found that the
fibres’ fragmentation rates can be expressed by means of the turbulent
stretching rates and proposed empirical fitting laws.

2.2.2. Turbulent channel flow
We now move to the behaviour of flexible fibres in turbulent

channels. Few studies have addressed the motion of fibres in turbulent
channels, among whose we cite the work by Dotto and Marchioli [69].

Dotto and Marchioli [69] investigated the behaviour of flexible
fibres longer than the Kolmogorov length scale in a turbulent channel
at 𝑅𝑒𝜏 = 150, with a focus on their translational and rotational
behaviour. In their numerical work the fibres are modelled as chains
of sub-Kolmogorov rods, connected though ball-and-socket joints, that
enable bending and twisting under the action of the local fluid velocity
gradients. They observed that the orientation of the fibres changes with
the fibre inertia and with the distance from the wall (see Fig. 9). They
investigated the probability density function of the fibre mean orien-
tation in the streamwise (𝑥) and wall-normal (𝑧) directions, i.e. ⟨𝑜𝑥|𝐺⟩
and ⟨𝑜𝑧|𝐺⟩. When 𝑜𝑗 = 1 the fibre is aligned with the 𝑗𝑡ℎ flow direction,

hile 𝑜𝑗 = 0 means that the fibre is orthogonal to such direction.
ince the fibres are flexible, they computed the orientation of each fibre
veraging along each sub-Kolmogorov element. For small inertia (𝑆𝑡 =
), the near-wall PDF is negatively skewed for ⟨𝑜𝑥|𝐺⟩ and positively
kewed for ⟨𝑜𝑧|𝐺⟩. In this case, thus, fibres are preferentially aligned
ith the streamwise flow direction and perpendicular to the mean

hear. Interestingly, this trend is more evident when longer fibres are
onsidered. In the bulk flow the PDF are more symmetric and more in-

ensitive to the fibres length. In fact, in the bulk region the flow is more
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Fig. 9. Fibre mean orientation in the streamwise (top) and wall normal (bottom) directions. From left to right 𝑆𝑡𝑟 = 1, 𝑆𝑡𝑟 = 5 and 𝑆𝑡𝑟 = 30. The thin solid line corresponds to
he PDF of a random distribution of orientation in a three-dimensional domain.
ource: Adapted from [69].
Fig. 10. Instantaneous fibre concentration along the wall-normal direction. From left to right: 𝑆𝑡𝑟 = 1, 𝑆𝑡𝑟 = 5 and 𝑆𝑡𝑟 = 30. 𝐶𝐺 is the number density defined as 𝐶𝐺(𝑡) = 𝑁𝑓 ;𝑠(𝑡)∕𝑉𝑠,
here 𝑁𝑓 ;𝑠(𝑡) is the number of fibres with centre of mass 𝐺 falling in the considered fluid slab at time 𝑡, and 𝑉𝑠 is the volume of the fluid slab. 𝐶0,𝐺 is the concentration at initial

ime. The figure refers to 𝑡+ = 1250 and is obtained with a number of slabs of 𝑁𝑠 = 150.
ource: Adapted from [69].
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omogeneous and isotropic, leading to a weaker preferential alignment.
hen increasing the Stokes number the symmetry in the bulk region

s maintained, while the behaviour of the near-wall PDF changes. For
ntermediate 𝑆𝑡 the PDF are only slightly skewed, indicating that the
endency for a preferential alignment decreases. For large 𝑆𝑡 the PDF
ecover an almost symmetric distribution as in this case fibres are less
nfluenced by the fluid motion. Note that for long fibres, the authors
ound a sharp peak in the probability density function (PDF) of ⟨𝑜𝑥|𝐺⟩
t values close to unity, which is accompanied by a larger drop in the
DF of ⟨𝑜𝑧|𝐺⟩. This is due to the fibre trapping in a thin region close to
he wall, where the geometric constraint imposed by the wall imposes
he streamwise alignment of the fibres.

Dotto and Marchioli [69] investigated also the influence of the fibre
lexibility on their concentration. They observed that the concentration
f flexible fibres in the near-wall region is always higher than that
f rigid fibres, indicating that flexible fibres face a stronger wallward
urbophoretic drift; see Fig. 10.

. What can we do with fibre-like objects?

The second part of the paper explores the interaction of fibre-like
bjects with fluid flows, emphasising their behaviour in turbulent flows
nd applications ranging from drag reduction to innovative flow mea-
urement techniques. Initial sections discuss the potential of rigid and
lexible fibres to modify flow characteristics and reduce turbulent drag,
bserved through various experimental and numerical studies. Later,
he paper introduces fibre tracking velocimetry (FTV), a novel method
or capturing detailed properties of turbulent flows, comparing its
 t
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ffectiveness to traditional particle-based measurement techniques. The
iscussion underscores the versatility of fibres as both flow modifiers
nd measurement tools, highlighting their significance in advancing our
nderstanding of fluid dynamics.

.1. Fibre-like objects for drag reduction

Over the last decades there has been a large number of studies
ealing with the reduction in turbulent friction losses by the dilute
ddition of additives such as polymers [74,75], surfactants [76,77] and
ibres [51,54,57,78]; we refer the interested reader to the recent review
y Marchioli and Campolo [79]. The reduction of turbulent drag by
he addition of fibre-like objects has been first observed experimentally
n suspension involving a wide array of material, for example paper,
sbestos, and colloidal crystals [80,81]. Some of these material can
ffectively be considered as rigid rods to a good approximation. Com-
ared to the flexible polymers [74], these types of additives have been
ess studied as they yield low drag reduction or require much larger
oncentrations to achieve the same amount of drag reduction as that
btained with flexible polymers additive. However, the use of fibrous
dditives is interesting as fibres are more resistant to shear degradation
han flexible polymers. As such, the possible use of fibres for drag
eduction purposes is very promising.

An interesting study of drag reduction induced by rigid neutrally-
uoyant fibres was given by Paschkewitz et al. [51]. They considered
igid neutrally buoyant fibres with length much smaller than all the
cales of the turbulent flow, and neglected all the inertial effects on
he scale of the fibres. They modelled the fibres using the Jeffrey’s
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Fig. 11. Influence of small fibres on a turbulent channel flow. Left: Mean velocity profile. Right: r.m.s. of the velocity fluctuations. The + superscript denotes viscous units. Data
aken from [51].
quation and the Fokker–Planck equation, and considered a turbulent
hannel flow. Their simulations reveal values of drag reduction up to
6%, with the maximum observed in semi-dilute condition. As shown in
ig. 11, they found that the effect of the fibres is qualitatively similar to
hat seen in polymeric simulations. Accordingly to other drag-reduced

lows [82,83], the presence of the fibres leads to an upwards shift of
he mean velocity profile in the logarithmic region, which is indicative
f a thickening of the viscous sublayer. Notably, they found that the
oot mean square of the velocity fluctuations resemble what seen in
olymeric simulations: the streamwise fluctuations increase and their
eak moves upwards, while the intensity of the wall-normal and span-
ise fluctuations decreases. By inspecting the near-wall region, they
bserved that the presence of the fibres weakens the near-wall vortex
tructures and increases their size. The spacing between the high- and
ow-speed streaks [84], instead, increases due to the presence of the
articles, moving from 100 wall units to 150. Based on these results,
hey proposed a mechanism for the fibre-induced drag reduction, that
ncludes the interaction of the fibres with the near-wall vortices. In
lain words, fibres strongly align in the (𝑦, 𝑧)-plane generating large
ormal and shear stresses. These stresses create a force opposite to
he Newtonian acceleration in the spanwise and wall-normal directions
hat weaken the near-wall vortex structures and lead to drag reduction.
hen fibres realign with the mean flow and the near-wall vortices
eform, sustaining this weakened turbulence. Later, Paschkewitz et al.
52] experimentally confirmed the ability of small rigid rods to effec-
ively reduce drag. They experimentally and numerically considered a
ero pressure gradient turbulent boundary layer where small rigid rods
ith different concentration were injected. They found drag reduction
p to 10%. The spatial development shows an initial drag reduction
egion followed by a region of quasi-steady-state drag reduction where
he drag reduction fluctuates about a mean value as the fibres undergo
he process of alignment, stress generation and relaxation as previously
iscussed. The increase of the fibre concentration does not increase the
rag reduction, but shifts downstream the region where it is actually
chieved.

Following these promising results, Moosaie and Manhart [54] de-
eloped a two-way coupling simulation technique for a dilute sus-
ension of rigid fibres to study the turbulent drag reduction by rigid
ibres in a turbulent channel flow at the nominal friction Reynolds
umber of 𝑅𝑒𝜏 ≈ 180. They solve the Navier–Stokes equations with
irect numerical simulations, and treated the suspended microstructure
n a Lagrangian manner using a particle tracking scheme. On each
agrangian path a cluster of sampling fibres is followed, and the
onformation of each cluster is computed using a direct Monte Carlo
ethod. Their results confirmed the previously reported features of a

ibrous drag reduced channel flow. They indeed found a vertical shift of
he logarithmic law region of the mean velocity profile and an increase
f the spanwise spacing between the near-wall streaks.

In a more recent work, Di Giusto and Marchioli [57] found that it is
ossible to achieve drag reduction in a turbulent channel flow, also by
sing long fibres. Unlike the previous works, indeed, they considered
112 
a different portion of the space of parameters, i.e. much longer fibres
with a length that extends up to the inertial range, and considerably
smaller volume fractions, i.e. 𝛷𝑉 ≈ 10−4 and 𝛷𝑉 ≈ 10−5; 𝛷𝑉 =
𝑉𝑝∕(𝑉𝑓 +𝑉𝑝) where 𝑉𝑓 and 𝑉𝑝 are the volumes occupied by the fluid and
the particles respectively. Their simulations are based on an Eulerian
Lagrange approach where fibres are modelled as chains of constrained
sub Kolmogorov Rods. They obtained the two-way coupling using the
Exact Regularised Point Particle Method [85]. In their analysis they
considered a turbulent channel at a friction Reynolds number of 𝑅𝑒𝜏 =
150 varying the fibres’ Stokes number in the 0.01 ≤ 𝑆𝑡 ≤ 10 range. They
found that also in the portion of the space of parameters they have
considered drag reduction is possible. They highlight the importance
of the volume fraction which is the key parameter to determine the
intensity of the drag reduction, and found that the mass load plays a
role: a minimal amount of inertial fibres is needed for the onset of drag
reduction, below which drag increases.

Considering more in general non spherical objects, it is worth
mentioning that Ardekani et al. [23] showed that also oblate rigid
particles are effective in reducing drag, in contrast to what observed for
spherical particles [86–88]. They considered a suspension of finite-size
oblate spheroidal particles with aspect ratio 𝜆 = 1∕3 freely moving in a
turbulent channel flow at a friction Reynolds number of 𝑅𝑒𝜏 = 180, and
used an immersed boundary method to properly solve the fluid around
each particle [89]. They found that the amount of drag reduction
progressively increases with the volume fraction of the suspension, up
to a value of ≈ 8% for 𝛷𝑉 = 0.15 (see Fig. 12). In a particle laden
turbulent channel flow, there are two important factors that determine
the overall drag, i.e. the turbulence activity in the suspension and
the particle-induced stresses, which are not only due to the increase
of the suspension effective viscosity in presence of particles, but also
due to their distribution along the channel. Picano et al. [86] have
shown that, for suspension of spheres, a particle layer forms close to the
wall, and this causes extremely large particle-induced stresses that are
therefore responsible for the large increase of the total drag, although
the turbulence activity reduces for high volume fractions. In case of
oblate particles the scenario is different; see Fig. 13. In fact, a particle
layer close to the wall does not form, meaning that the particle-induced
stresses are rather weak. As the volume fraction increases, indeed, the
relative momentum transfer due to the Reynolds stresses decreases, but
the particle-induced stress does not increase enough to compensate it,
leading thus to a global decrease of the drag.

3.2. Fibres as a measurement technique

Over the last years several contributions have shown that fibres
with finite size can be effectively used as tools for measurements of the
unperturbed flow. This research field considers both rigid and flexible
fibres, and enables a reliable measure of two-points statistics of the
flow. Notably, based on these argument a new experimental technique,
named ‘‘fibre tracking velocimetry’’ has been introduced [35], which

substantially improves the well-known techniques based on particle
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Fig. 12. Drag reduction by oblate rigid particles in a turbulent channel flow. Adapted from [23]. Left: Mean fluid velocity profiles for different volume fractions. Right: dependence
of the amount of drag reduction 𝐷𝑅 on the volume fraction of the suspension 𝛷𝑉 .
Fig. 13. Profiles of the solid-phase average mean local volume fraction 𝛷(𝑦) (left) and of the mean particle velocity profiles 𝑈𝑝(𝑦) (right).
Source: Adapted from [23].
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racers as the particle image velocimetry (PIV) and the particle tracking
elocimetry (PTV). In this section we report the main contributions and
istinguish between rigid and flexible fibres.

.2.1. Rigid fibres
Cavaiola et al. [25] were the first to address the possibility of

easuring the whole structure of the flow velocity gradient by means
f a Lagrangian tracking of assembly of rigid fibres. The idea is to
eplace single particles typically used in particle image or tracking
elocimetry (PIV/PTV) to measure single-point fluid properties [90],
ith fibres in order to access two-points and multi-points fluid prop-
rties. In this proof of concept work, Cavaiola et al. [25] considered
aminar flows and focused on cellular flows, which are considered
s a conceptual representation of eddies of a turbulent flow. They
onsidered the Arnold–Beltrami–Childress (ABC) flow [91], which is a
eriodic solution of the Euler’s equations, with rigid fibres of length
∕𝐿𝑑 = (2𝜋)−1; where 𝐿𝑑 is the domain size. To assess the influence of

he inertia of the fibres they varied the Stokes number between 0.01 ≤
𝑡 ≤ 4, where 𝑆𝑡 = 𝜏𝑠∕𝜏𝑓 with 𝜏𝑓 = 𝐿𝑑∕𝑈 being the characteristic
ydrodynamic time scale and 𝜏𝑠 the fibre Stokes time, i.e. the relaxation
ime of a fibre immersed in a viscous flow (it is a measure of the fibre
nertia compared to the flow and quantifies the strength of the coupling
etween the two phases).

In this idealised framework, Cavaiola et al. [25] found that fibres
annot be effectively used to measure single point flow quantities,
s done in PIV and PTV techniques with tracer particles. In fact,
ven at the smallest Stokes number they have considered, the velocity
agnitude of the fibres’ ends significantly differs compared with the

elocity magnitude of the unperturbed flow. However, they found
hat, provided that the Stokes numbers is small enough, the velocity
ifference between the two end points of the fibres 𝛿𝑽 = 𝑽 𝐵 − 𝑽 𝐴
rojected on a plane normal to the direction parallel to the fibre end
o end distance 𝒓̂ (see Fig. 14), matches the unperturbed fluid velocity
ifference 𝛿𝒖 = 𝒖𝐵 − 𝒖𝐴 projected on the same plane, i.e.

𝑽 ⋅ 𝒓̂ = 𝛿𝒖 ⋅ 𝒓̂ ;
⟂ ⟂ o
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ee figure 4 of their paper.
Note that with unperturbed fluid velocity we refer to the velocity

f the fluid in absence of the fibre. The projection along the normal
irection to the fibre is crucial for the fibre to be a proxy of the unper-
urbed flow velocity differences. If the velocity difference is projected
long a generic direction the above agreement is not present, due to the
ibre inextensibility that makes the velocity difference in the direction
arallel to the fibre to be null. The projection to the normal direction,
nstead, washed out this constraint. Interestingly, provided that the
ibre is small enough compared to the fluid scales, the projected end
o end velocity difference is a measure of the velocity derivative at
he fibre centre of mass. In view of this, the authors suggested that
his may enable the access to the full fluid velocity gradient tensor
𝑢𝑖∕𝜕𝑥𝑗 , by properly assembling 𝑁𝑓 fibres. By considering the simple
wo-dimensional case, due to the incompressibility constrain the actual
nknowns for the velocity gradient tensor are three. Therefore, the
omplete tensor can be evaluated using an assembly of 𝑁𝑓 = 3 fibres
see the right panel of Fig. 14), and solving the following system:

𝛿𝑉 (1)
⟂ = 𝜕𝑢𝑖

𝜕𝑥𝑗
𝑟̂(1)𝑗 𝑟̂(1)⟂,𝑖

𝛿𝑉 (2)
⟂ = 𝜕𝑢𝑖

𝜕𝑥𝑗
𝑟̂(2)𝑗 𝑟̂(2)⟂,𝑖

𝛿𝑉 (3)
⟂ = 𝜕𝑢𝑖

𝜕𝑥𝑗
𝑟̂(3)𝑗 𝑟̂(3)⟂,𝑖.

(1)

In view of the above discussion, the ability of elongated solid ob-
ects, like fibres, to move within the flow without significantly altering
t is of large interest for the development of non intrusive measure-
ent techniques. This point has been also addressed by Cavaiola and
azzino [92], by investigating whether self-propelled objects (solid

bjects that may possess inertial and internal elastic degree of free-
om) may detect some features of the unperturbed flow field, despite
heir disturbing presence. They observed that for a wide range of
low and swimmer Reynolds numbers, the swimmers are able to sense
ydrodynamic signal with quite good accuracy. In fact, despite the
erturbation due to the swimmer motion, there are some hydrodynamic

bservables that are practically unaffected by the swimmer motion. For
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Fig. 14. Left: Sketch of a generic fibre and of the local reference system. 𝒓̂ refers to the direction parallel to the end to end distance, while 𝒓̂⟂ refers to the normal to the fibre
direction. Right: Assembly of 𝑁𝑓 = 3 fibres that can be used in the two-dimensional case to evaluate the complete velocity gradient tensor.
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xample, they cite the velocity differences evaluated at the swimmer
nds, projected along a direction on a plane normal to the swimmer
rientation. In agreement with the results of [25], they observed that
or short swimmers, this kinematic observable reduces to the flow
erivative along that direction.

Following the work by Cavaiola et al. [25], Brizzolara et al. [35]
roposed an experimental techniques named ‘‘fibre tracking velocime-
ry’’ (FTV), which aims at measuring two-points statistics of turbulent
lows. It consists of spreading rigid fibres in the flow, and tracking their
osition and orientation in time. The authors claim that this method
s superior to the traditional methods based on tracer particles, in
articular when measuring the two-point statistics of turbulence. In
act, this method fits perfectly the necessity of measuring two-point
tatistics in the inertial range, in case where high particle concentration
s hardly reachable or maintainable in time. The FTV technique is
xpected to be relevant when measuring quantities related to spatial
elocity gradients, such as energy dissipation. In fact a well-known
ssue of tracer-based techniques is the evaluation of two-point statistical
uantities, which are of special interest in turbulence. In a turbulent
low the relative distance between two particles that initially are close
nough grows in time as ∼ 𝑡3∕2, following the Richardson diffusion
aw [93]. This makes hard the use of particle tracers to obtain con-
erged two-point statistics, as they tend to separate. A further situation
here particle tracers are weak is when measuring quantities related to

he velocity gradient tensor such as the energy dissipation rate. Indeed,
he only way to access to these measures is by using an extremely
igh number of particles, that may alter the flow statistics. All these
roblems are overcome when using the FTV, as the measures are simply
ased on the fibre end to end velocity differences projected in to the
ormal to the fibres direction [25]. Note that the rigidity of the fibres
n this technique is essential, as it ensures that the distance between the
wo ends is constant. By virtue of this constrain, indeed, it is possible
o investigate the behaviour of eddies of a selected size. Note that in
he FTV method, to be a proxy of turbulent eddies, the fibres must fulfil
wo simple conditions: (i) the length of the fibre has to be comparable
o the size of the eddy under consideration; (ii) the inertia of the fibre
as to be negligible or, in other words, the Stokes number has to be
ow [25,92].

Besides, exploring the feasibility of the FTV technique by means
f numerical simulations, Brizzolara et al. [35] performed a labora-
ory experiment within a water tank and validated it, by means of a
omparison with the PTV technique. They used a set up where both
he PTV and FTV perform well. Fig. 15 shows the reliability of the
TV measurements showing a good agreement between the PTV and
TV measurements of the transversal structure functions and of the
urbulence dissipation rate.

Besides the use of rigid straight fibres for measuring fluid phase

roperties, several authors have considered particles with complex f
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and different shapes suggesting that, after calibration, following their
motion may provide a powerful new way to analyse the dynamics of
turbulent flows. Among the others, we cite the particles introduced
by Kramel et al. [94]. These particles are called chiral dipoles, because
of their similarity to electrical dipoles (see figure 1 of their paper).
When placed in a pure strain flow, due to the high aspect ratio, the
chiral dipoles tumble and align with the extensional strain direction 𝒅̂.

hen, due to the presence of the helices, the chiral dipole couples with
he strain flow, and produces a solid body rotation 𝜴 = 𝛺𝑑 𝒅̂, where 𝛺𝑑
s the spinning rate. In their paper, Kramel et al. [94] characterised the
esponse of the chiral dipole to a pure strain flow, and showed that the
ean spinning rate depends on both the aspect ratio and the pitch of

he particle; the pitch of the dipole is defined as the length along the
article for a complete turn of the helices, divided by their diameter. By
sing this type of particles and measuring their rotations, the authors
laim that it is possible to analyse the dynamics of turbulent flow,
easuring for example stretching experienced by orientable elements

n turbulent flows [95].

.2.2. Flexible fibres
The use of flexible fibres to measure two-point, and more gener-

lly multipoint, statistics of turbulence require the understanding of
he dynamics of a flexible fibre freely moving in a three-dimensional
ully developed turbulent flow. With this in mind, Rosti et al. [32]
nvestigated the dynamics of a flexible fibre moving in homogeneous
sotropic turbulence (HIT), and presented a phenomenological theory
o describe the interaction between the fibre elasticity and the turbulent
low, extending the previous works by Brouzet et al. [96] and Verhille
nd Bartoli [97] to the inertial range of scales. Their theory is based
n simple arguments. They observed that two characteristic timescales
an be identified for the fibre: (i) the viscous time scale 𝜏𝜇 = 2𝜌1∕𝜇
btained by balancing the fibre inertia with the viscous damping, and
ii) the fibre elastic time 𝜏𝛾 = 𝛼(𝜌1𝐿4∕𝛾)1∕2 obtained by balancing the
ibre inertia with the bending rigidity; 𝜌1 denotes the linear density
f the fibres. They argue, therefore, that depending on the value of
he damping ratio 𝜁 = 𝜏𝜇∕𝜏𝛾 different regimes are expected. In the
nderdamped regime (0 ≤ 𝜁 ≤ 1) the elasticity is expected to strongly
ffect the fibre dynamics, while in the overdamped regime 𝜁 > 1
he elastic effects are expected to be strongly inhibited. Here we are
nterested on the underdamped regime. As shown in Fig. 16, for large
lasticity (small 𝛾) the fibre is deformed only by large values of the
train, and rapidly reacts oscillating at its characteristic frequency to
estore the straight position. For small fibre elasticity (large 𝛾), instead,
he fibre does not resit the deformation and it is slaved to the turbulent
luctuations. The bending rigidity separating these two behaviours 𝛾𝑐𝑟𝑖𝑡
an be extracted from a resonance condition between the fibre elastic
ime 𝜏𝛾 and the eddy turnover time 𝜏𝑓 (𝑟) = 𝑟2∕3𝜖−1∕3 evaluated at the

ibre scale 𝐿 [32]. In view of this, the scenario is the following: when
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Fig. 15. Comparison between PTV and FTV in the experiments by [35]. Left: Second- and third-order transverse velocity structure functions (𝑆⟂
2 and 𝑆⟂

3 ) from experiments. Solid
and dashed lines are for PTV, while symbols denote statistics obtained with FTV. Right: Comparison between the turbulence dissipation rate evaluated with FTV and PTV. The
solid line refers to the FTV measures, while the red circles to the PTV measurements.
Source: Adapted from [35].
Fig. 16. Fibre oscillation frequency as a function of the fibre bending rigidity. Blue:
𝐿∕𝐿𝑑 = 0.12 and 𝜌1∕(𝜌𝑓𝐿2

𝑑 ) = 0.042. Red: 𝐿∕𝐿𝑑 = 0.16 and 𝜌1∕(𝜌𝑓𝐿2
𝑑 ) = 0.042. Green:

𝐿∕𝐿𝑑 = 0.20 and 𝜌1∕(𝜌𝑓𝐿2
𝑑 ) = 0.042. Orange: 𝐿∕𝐿𝑑 = 0.16 and 𝜌1∕(𝜌𝑓𝐿2

𝑑 ) = 0.014
or 0.125. Grey: 𝐿∕𝐿𝑑 = 0.16 and 𝜌1∕(𝜌𝑓𝐿2

𝑑 ) = 0. Brown triangles: 𝐿∕𝐿𝑑 = 0.16 and
𝜌1∕(𝜌𝑓𝐿2

𝑑 ) = 0.042, passive scalar cases. 𝜌1 is the fibres linear density, 𝜌𝑓 is the fluid
density and 𝐿𝑑 is the size of the domain. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
Source: Adapted from [34].

𝛾 < 𝛾𝑐𝑟𝑖𝑡 the fibre oscillates accordingly with the turbulence frequency
1∕𝜏𝑓 (𝐿), while for 𝛾 > 𝛾𝑐𝑟𝑖𝑡 the fibre oscillates following the first fibre
normal mode with frequency 1∕𝜏𝛾 .

The key result of Rosti et al. [32], later expanded in Rosti et al.
[34], is that when 𝛾∕𝛾𝑐𝑟𝑖𝑡 < 1 and the fibre is locked to the frequency
of the turbulent eddies of the same size, it is a good proxy of the
velocity fluctuations at the same scale. In view of this, Rosti et al. [32]
proposed for the first time to use flexible fibres to reveal the turbulent
features at different scales. This is clearly visible in Fig. 17, where a
comparison between the statistics based on the fibre flapping and on
the Eulerian measurements are compared. This clearly states that the
flow can be seeded with several elastic objects, potentially of different
lengths in order to measure eddies of different size [34]. However, it
should be noted that an increase of the concentration of the dispersed
phase may modify the flow and increase the importance of the fibre-
flow feedback [27], rendering the process of utilising fibres to gather
flow statistics in vain. In this case the theory should be modified to
account for the fluid phase modulation.

Similarly to the above discussed FTV based on rigid fibres, Hejazi
et al. [33] proposed flexible particles of a different shape to properly
extract the flow velocity gradient. They considered particles made of
several slender arms, and showed that by tracking its rotation and the
deformation of the arms one can measure the flow velocity gradient.
In a generic three-dimensional incompressible flow there are eight free
parameters in the velocity gradient tensor. If the particle is sufficiently
isotropic, it rotates with the fluid vorticity. Therefore, the measure
of the solid body rotation allows to reconstruct the three components
115 
of the velocity gradient tensor. The remaining five parameters can be
extracted from the deformation of the 𝑛 particle arms. The orientation
of each arm requires the measurement of in-plane and out-of plane
angles, providing a total of 2𝑛 measurements. Since three Euler angles
are needed to specify the orientation of an undeformed particle in
space, the total number 𝑛 of arms needed to determine the five remain-
ing parameters is such that 2𝑛 − 3 ≥ 5. This means that for properly
measuring the complete flow velocity gradient in a three-dimensional
flow, we need to compute the deformation from their equilibrium of at
least 𝑛 = 4 arms. In their proof of concept experimental study, Hejazi
et al. [33] considered a two-dimensional shear flow and measured the
complete velocity gradient tensor by means of a 3D printed deformable
triad, i.e. a particle with 𝑛 = 3 arms separated equally by 2𝜋∕3 radiants.
They found that the value of the magnitude of the strain deduced from
the instantaneous particle deformation oscillates around an average
value that matches the actual strain. Clearly, this type of particles can
provide a measurement of the instantaneous strain rate tensor in the
flow as long as the particle deformation relaxation time is shorter than
the time scale associated with the velocity gradients.

4. Conclusions and future developments

This comprehensive review has examined the dynamic interplay
between turbulent flows and fibre-like objects, with a main focus
on anisotropic particles larger than the Kolmogorov scale. The in-
sights provided here extend beyond the previously dominant studies on
smaller fibres, offering new perspectives on the behaviour of both rigid
and flexible fibres within turbulent flows. The review has highlighted
the complex interactions of these fibres with flow properties, their
organisation in various flow types, and their potential applications in
engineering and environmental contexts.

The behaviour of fibre-like objects in turbulent flows, whether rigid
or flexible, introduces significant complexities due to their anisotropic
character. Their motion, characterised by tumbling, spinning, and pref-
erential alignment with flow properties such as vorticity or strain
rate, impacts both the fluid and the solid phases. These interactions
become even more intricate when considering fibres that are flexible
and subject to deformation, exhibiting complex motion influenced by
various flow properties.

From a numerical perspective, advancements in computational po-
wer and techniques like immersed boundary methods have substan-
tially enhanced our understanding of these interactions. Additionally,
the review has underscored the importance of considering two-way
coupling in scenarios with significant fibre concentrations or flexibility.

One of the significant applications of these studies lies in the use of
fibre-like objects for turbulent flow measurements. Techniques like Fi-
bre Tracking Velocimetry have been introduced, offering new methods
to measure properties of turbulence at fixed length scales.

Looking ahead, there are several areas where further research could
be highly beneficial. Firstly, expanding our understanding of the in-
teractions between flexible fibres and turbulent flows will be crucial,
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Fig. 17. Left: Second-order 𝑆2 (solid line) and third-order 𝑆3 (dashed line) velocity structure functions computed in the standard Eulerian way and the same measure obtained
with the Lagrangian fibre tracking for the 𝛾∕𝛾𝑐𝑟𝑖𝑡 = 0.3 case (blue circles). Right: probability density function (P) of the longitudinal velocity increments 𝛾∕𝛾𝑐𝑟𝑖𝑡 = 0.3. The solid line
efers to the Eulerian PDF, while the bullets to the PDF from the Lagrangian fibre measurements.
ource: Adapted from [34].
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specially in scenarios where these fibres exhibit significant defor-
ations. This area is particularly relevant for understanding natural
rocesses and in designing engineering applications where flexible
ibres are involved.

Secondly, developing and refining measurement techniques using
ibre-like objects can open new doors in experimental turbulence re-
earch. The potential of these techniques to measure complex flow
roperties with greater accuracy could lead to breakthroughs in our
nderstanding of turbulence.

Finally, the environmental impact of microplastics and other fibre-
ike pollutants in aquatic environments remains a pressing concern.
urther research in this area is essential for developing effective strate-
ies to address this global challenge.

In conclusion, the study of turbulent flows laden with fibre-like
bjects is a vibrant and rapidly evolving field. The progress made
o far has been substantial, but there remains much to explore and
nderstand. As computational and experimental techniques continue to
dvance, we can expect even deeper insights into the complex dynamics
f these systems.
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ppendix. List of the works

A non exhaustive list of the references considered in this work
re reported in Table A.1. Works dealing with fibre-like object in
omogeneous isotropic turbulence and turbulent channel flows are con-
idered. Works based on both numerical simulations and experiments
re considered.
Table A.1
Details of some of the references considered in this work dealing with fibre-like objects in homogeneous isotropic turbulence (left) and turbulent channel flow
(right). 𝑅𝑒𝜆 is the microscale Reynolds number; 𝐿 and 𝜂 denote the length of the fibres and the Kolmogorov scale respectively; 𝜌𝑝∕𝜌𝑓 is the fibre-to-fluid density
ratio; 𝛷𝑉 is the volume fraction of the suspension; 𝑅𝑒𝜏 is the friction Reynolds number; 𝐿+ denotes the length of the fibres in viscous units.

Homogeneous isotropic turbulence

Ref. Method 𝑅𝑒𝜆 𝐿∕𝜂 𝜌𝑝∕𝜌𝑓 𝛷𝑉 Type

Shin and Koch [37] DNS+model 16 − 55 0.3 − 59 ≈ 1 ≪ 1 Rigid
Parsa et al. [41] Experiment 160 − 214 2.6 − 4.8 ≈ 1 ≪ 1 Rigid
Chevillard and Meneveau [42] DNS+model 125 < 1 ≈ 1 ≪ 1 Rigid
Byron et al. [44] DNS+model 435 < 1 ≈ 1 ≪ 1 Rigid
Byron et al. [44] Experiment 310 10 − 40 1.01 0.1% Rigid
Parsa and Voth [17] Experiment 150 − 210 2.8 − 72.9 ≈ 1 ≪ 1 Rigid
Bordoloi and Variano [18] Experiment ≈ 280 16 − 63 ≈ 1 ≪ 1 Rigid
Bounoua et al. [19] Experiment 350 − 610 41 − 103 ≈ 1 < 0.1% Rigid
Kuperman et al. [36] Experiment 115 3.6 − 17.3 ≈ 1000 ≪ 1 Rigid
Brizzolara et al. [35] DNS+IBM 92 20 − 40 102 − 103 ≪ 1 Rigid
Brizzolara et al. [35] Experiment 146 90 − 170 ≈ 1 ≪ 1 Rigid
Gay et al. [68] Experiment – 250 − 1250 ≈ 1 ≪ 1 Flexible
Olivieri et al. [27] DNS+IBM 120 4 − 81 1.1 − 103 0.003% − 0.6% Flexible
Rosti et al. [32] DNS+IBM 92 12 − 25 102 − 103 ≪ 1 Flexible

(continued on next page)
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Table A.1 (continued).
Turbulent channel flow

Ref. Method 𝑅𝑒𝜏 𝐿+ 𝜌𝑝∕𝜌𝑓 𝛷𝑉 Type

Marchioli et al. [10] DNS+Model 150 0.75 − 36 10 − 103 ≪ 1 Rigid
Do-Quang et al. [22] DNS+Model 180 3.2 − 24 1 − 1.2 0.1% − 0.4% Rigid
Shaik et al. [58] Experiment 435 27.7 − 50.8 1.15 ≪ 1 Rigid
Shaik and van Hout [59] Experiment 435 16 − 66.8 1.15 − 1.38 ≪ 1 Rigid
Baker and Coletti [63] Experiment 620 50 ≈ 1 10−4 Rigid
Alipour et al. [66] Experiment 360 10 1.15 ≪ 1 Rigid
Alipour et al. [67] Experiment 180 − 720 5 − 20 1.15 ≪ 1 Rigid
Dotto and Marchioli [69] DNS+Model 150 4 − 12 50 − 3000 ≪ 1 Flexible
Di Giusto and Marchioli [57] DNS+Model 150 180 1.3 − 1300 10−4 − 10−5 Flexible
References

[1] F. Lundell, L.D. Söderberg, P.H. Alfredsson, Fluid mechanics of papermaking,
Annu. Rev. Fluid Mech. 43 (2011) 195–217, http://dx.doi.org/10.1146/annurev-
fluid-122109-160700.

[2] M.J. Shelley, J. Zhang, Flapping and bending bodies interacting with fluid flows,
Annu. Rev. Fluid Mech. 43 (2011) 449–465, http://dx.doi.org/10.1146/annurev-
fluid-121108-145456.

[3] A. du Roure, E.N. Nazockdast, M.J. Shelley, Dynamics of flexible fibers in
viscous flows and fluids, Annu. Rev. Fluid Mech. 51 (2019) 539–572, http:
//dx.doi.org/10.1146/annurev-fluid-122316-045153.

[4] A. Cózar, F. Echevarría, J.I. González-Gordillo, X. Irigoien, B. Úbeda, S.
Hernández-León, A.T. Palma, S. Navarro, J. García-de Lomas, A. Ruiz, M.L.
Fernández-de Puelles, C.M. Duarte, Plastic debris in the open ocean, Proc. Natl.
Acad. Sci. 111 (2014) 10239–10244, Publisher: Proceedings of the National
Academy of Sciences.

[5] M. Filella, Questions of size and numbers in environmental research on mi-
croplastics: methodological and conceptual aspects, Environ. Chem. 12 (2015)
527–538, Publisher: CSIRO PUBLISHING.

[6] C. Brouzet, R. Guiné, M.J. Dalbe, B. Favier, N. Vandenberghe, E. Villermaux,
G. Verhille, Laboratory model for plastic fragmentation in the turbulent ocean,
Phys. Rev. Fluids 6 (2021) 024601, Publisher: American Physical Society.

[7] M.N. Ardekani, G. Sardina, L. Brandt, L. Karp-Boss, R.N. Bearon, E.A. Variano,
Sedimentation of inertia-less prolate spheroids in homogenous isotropic turbu-
lence with application to non-motile phytoplankton, J. Fluid Mech. 831 (2017)
655–674, Publisher: Cambridge University Press.

[8] G. Verhille, S. Moulinet, N. Vandenberghe, M. Adda-Bedia, P. Le Gal, Structure
and mechanics of aegagropilae fiber network, Proc. Natl. Acad. Sci. 114 (2017)
4607–4612, Publisher: Proceedings of the National Academy of Sciences.

[9] M. Parsheh, M.L. Brown, C.K. Aidun, On the orientation of stiff fibres suspended
in turbulent flow in a planar contraction, J. Fluid Mech. 545 (2005) 245–269,
Publisher: Cambridge University Press.

[10] C. Marchioli, M. Fantoni, A. Soldati, Orientation, distribution, and deposition
of elongated, inertial fibers in turbulent channel flow, Phys. Fluids 22 (2010)
033301, http://dx.doi.org/10.1063/1.3328874.

[11] S. Bagheri, A. Mazzino, A. Bottaro, Spontaneous symmetry breaking of a hinged
flapping filament generates lift, Phys. Rev. Lett. 109 (2012) 154502, http://
dx.doi.org/10.1103/PhysRevLett.109.154502, URL: https://link.aps.org/doi/10.
1103/PhysRevLett.109.154502.
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