We present a technique for the direct optimization of conservative backbone curves in nonlinear mechanical systems. The periodic orbits on the conservative backbone are computed analytically using the reduced dynamics of the corresponding Lyapunov subcenter manifold (LSM). In this manner, we avoid expensive full-system simulations and numerical continuation to approximate the nonlinear response. Our method aims at tailoring the shape of the backbone curve using a gradient-based optimization with respect to the system’s parameters. To this end, we formulate the optimization problem by imposing constraints on the frequency-amplitude relation. Sensitivities are computed analytically by differentiating the backbone expression and the corresponding LSM. At each iteration, only the reduced-order model construction and sensitivity computation are performed, making our approach robust and efficient.

Backbone curve tailoring via Lyapunov subcenter manifold optimization

Pozzi, Matteo;Marconi, Jacopo;Braghin, Francesco
2024-01-01

Abstract

We present a technique for the direct optimization of conservative backbone curves in nonlinear mechanical systems. The periodic orbits on the conservative backbone are computed analytically using the reduced dynamics of the corresponding Lyapunov subcenter manifold (LSM). In this manner, we avoid expensive full-system simulations and numerical continuation to approximate the nonlinear response. Our method aims at tailoring the shape of the backbone curve using a gradient-based optimization with respect to the system’s parameters. To this end, we formulate the optimization problem by imposing constraints on the frequency-amplitude relation. Sensitivities are computed analytically by differentiating the backbone expression and the corresponding LSM. At each iteration, only the reduced-order model construction and sensitivity computation are performed, making our approach robust and efficient.
2024
File in questo prodotto:
File Dimensione Formato  
Backbone curve tailoring via Lyapunov subcenter manifold optimization.pdf

Accesso riservato

Dimensione 1.77 MB
Formato Adobe PDF
1.77 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1271914
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact