The paper addresses the problem of estimating the energy consumed by production resources in manufacturing so that alternative process designs can be compared in terms of energy expenditure. In particular, the proposed methodology focuses on Computer Numerical Controlled (CNC) machining centers. Classical approaches to energy modeling require high expertise and large development effort since, for example, data acquisition is resource-specific and must be repeated frequently to avoid obsolescence. An automated and flexible data-driven methodology is designed in this work. A data-driven method is employed to learn a hybrid and stochastic model of a CNC machining center’s energetic behavior. The learned model is used to provide offline energy consumption estimates of simulated part-programs before the actual execution of the cutting. Numerical results show the performance of the proposed method on a set of case studies. The methodology is also applied to a real industrial application, including data collected during machine production. Note to Practitioners —This article provides a flexible and autonomous data-driven approach to building models representing the energetic behavior of production resources, particularly CNC machining centers. The learned models can predict machine energy consumption while executing complex part-programs. The algorithm uses data that are commonly acquired by contemporary machine monitoring systems and does not require ad-hoc experimental tests for training. Specifically, it requires the spindle rotary speed signal, part load/unload signal, and spindle (or machine) power signal during the learning phase, whilst the estimation phase uses only the load/unload and spindle speed simulated signals.

Data-Driven Energy Modeling of Machining Centers Through Automata Learning

Lestingi, Livia;Frigerio, Nicla;Bersani, Marcello M.;Matta, Andrea;Rossi, Matteo
2024-01-01

Abstract

The paper addresses the problem of estimating the energy consumed by production resources in manufacturing so that alternative process designs can be compared in terms of energy expenditure. In particular, the proposed methodology focuses on Computer Numerical Controlled (CNC) machining centers. Classical approaches to energy modeling require high expertise and large development effort since, for example, data acquisition is resource-specific and must be repeated frequently to avoid obsolescence. An automated and flexible data-driven methodology is designed in this work. A data-driven method is employed to learn a hybrid and stochastic model of a CNC machining center’s energetic behavior. The learned model is used to provide offline energy consumption estimates of simulated part-programs before the actual execution of the cutting. Numerical results show the performance of the proposed method on a set of case studies. The methodology is also applied to a real industrial application, including data collected during machine production. Note to Practitioners —This article provides a flexible and autonomous data-driven approach to building models representing the energetic behavior of production resources, particularly CNC machining centers. The learned models can predict machine energy consumption while executing complex part-programs. The algorithm uses data that are commonly acquired by contemporary machine monitoring systems and does not require ad-hoc experimental tests for training. Specifically, it requires the spindle rotary speed signal, part load/unload signal, and spindle (or machine) power signal during the learning phase, whilst the estimation phase uses only the load/unload and spindle speed simulated signals.
2024
Energy modeling, machining, automata learning, data-driven modeling
File in questo prodotto:
File Dimensione Formato  
Data-Driven Energy Modeling of Machining Centers Through Automata Learning.pdf

accesso aperto

: Publisher’s version
Dimensione 9.42 MB
Formato Adobe PDF
9.42 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1270148
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact