The AI-SPRINT project, launched in 2021 and funded by the European Commission, focuses on the development and implementation of AI applications across the computing continuum. This continuum ensures the coherent integration of computational resources and services from centralized data centers to edge devices, facilitating efficient and adaptive computation and application delivery. AI-SPRINT has achieved significant scientific advances, including streamlined processes, improved efficiency, and the ability to operate in real time, as evidenced by three practical use cases. This paper provides an in-depth examination of these applications – Personalized Healthcare, Maintenance and Inspection, and Farming 4.0 – highlighting their practical implementation and the objectives achieved with the integration of AI-SPRINT technologies. We analyze how the proposed toolchain effectively addresses a range of challenges and refines processes, discussing its relevance and impact in multiple domains. After a comprehensive overview of the main AI-SPRINT tools used in these scenarios, the paper summarizes of the findings and key lessons learned.

Harnessing the computing continuum across personalized healthcare, maintenance and inspection, and Farming 4.0

E. Lomurno;A. Archetti;D. Ardagna;M. Matteucci
2024-01-01

Abstract

The AI-SPRINT project, launched in 2021 and funded by the European Commission, focuses on the development and implementation of AI applications across the computing continuum. This continuum ensures the coherent integration of computational resources and services from centralized data centers to edge devices, facilitating efficient and adaptive computation and application delivery. AI-SPRINT has achieved significant scientific advances, including streamlined processes, improved efficiency, and the ability to operate in real time, as evidenced by three practical use cases. This paper provides an in-depth examination of these applications – Personalized Healthcare, Maintenance and Inspection, and Farming 4.0 – highlighting their practical implementation and the objectives achieved with the integration of AI-SPRINT technologies. We analyze how the proposed toolchain effectively addresses a range of challenges and refines processes, discussing its relevance and impact in multiple domains. After a comprehensive overview of the main AI-SPRINT tools used in these scenarios, the paper summarizes of the findings and key lessons learned.
2024
14th International Conference on Cloud Computing and Services Science, CLOSER 2024
978-989-758-701-6
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1269648
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact