The aim of this work is to prove the weak–strong uniqueness principle for the compressible Navier–Stokes–Poisson system on an exterior domain, with an isentropic pressure of the type p(ϱ)=aϱ^γ and allowing the density to be close or equal to zero. In particular, the result will be first obtained for an adiabatic exponent γ∈[9/5,2] and afterwards, this range will be slightly enlarged via pressure estimates “up to the boundary”, deduced relaying on boundedness of a proper singular integral operator.

Weak-strong uniqueness principle for compressible barotropic self-gravitating fluids

Danica Basaric
2022-01-01

Abstract

The aim of this work is to prove the weak–strong uniqueness principle for the compressible Navier–Stokes–Poisson system on an exterior domain, with an isentropic pressure of the type p(ϱ)=aϱ^γ and allowing the density to be close or equal to zero. In particular, the result will be first obtained for an adiabatic exponent γ∈[9/5,2] and afterwards, this range will be slightly enlarged via pressure estimates “up to the boundary”, deduced relaying on boundedness of a proper singular integral operator.
File in questo prodotto:
File Dimensione Formato  
11311-1269490_Basaric.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 224.53 kB
Formato Adobe PDF
224.53 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1269490
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact