A 15% increase in thermal efficiency at medium pressure ratios is promised by rotating detonation engine technology over conventional Joule-Bryton cycles. A supersonic inlet turbine is a viable option to extract substantial work from the highly fluctuating and supersonic flow delivered by the detonating combustor. However, an additional unstarting mechanism based on the generation of a collective shock from the coalescence of leading-edge bow-shock waves further restricts the available design space. First, the effect of unsteady inlet conditions with variable frequency, amplitude, and mean value on collective shock generation is investigated. Then, a fast and cost-effective tool was developed and verified to predict bow-shock wave motion from a prescribed inlet Mach trend; the parameters of the transfer function were estimated with a classical identification method based on a step-response computational fluid dynamics (CFD) simulation. The model was employed to rapidly calculate the maximum amplitude of fluctuations accepted by the supersonic blade row for each frequency and average inlet Mach number. Finally, the influence of the inlet geometric angle, pitch to leading-edge thickness ratio, and static temperature on the model parameters is studied. The preliminary observations of the parametric analysis were confirmed by the rigorous quantitative approach of a global sensitivity analysis based on Sobol sensitivity indices.
The Effect of Upstream Unsteadiness on the Unstarting of a Supersonic Inlet Turbine
Mushtaq N.;Gaetani P.
2024-01-01
Abstract
A 15% increase in thermal efficiency at medium pressure ratios is promised by rotating detonation engine technology over conventional Joule-Bryton cycles. A supersonic inlet turbine is a viable option to extract substantial work from the highly fluctuating and supersonic flow delivered by the detonating combustor. However, an additional unstarting mechanism based on the generation of a collective shock from the coalescence of leading-edge bow-shock waves further restricts the available design space. First, the effect of unsteady inlet conditions with variable frequency, amplitude, and mean value on collective shock generation is investigated. Then, a fast and cost-effective tool was developed and verified to predict bow-shock wave motion from a prescribed inlet Mach trend; the parameters of the transfer function were estimated with a classical identification method based on a step-response computational fluid dynamics (CFD) simulation. The model was employed to rapidly calculate the maximum amplitude of fluctuations accepted by the supersonic blade row for each frequency and average inlet Mach number. Finally, the influence of the inlet geometric angle, pitch to leading-edge thickness ratio, and static temperature on the model parameters is studied. The preliminary observations of the parametric analysis were confirmed by the rigorous quantitative approach of a global sensitivity analysis based on Sobol sensitivity indices.File | Dimensione | Formato | |
---|---|---|---|
turbo_146_4_041005.pdf
Accesso riservato
Descrizione: Articolo principale
:
Publisher’s version
Dimensione
1.32 MB
Formato
Adobe PDF
|
1.32 MB | Adobe PDF | Visualizza/Apri |
11311-1269183 Mushtaq.pdf
accesso aperto
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
9.94 MB
Formato
Adobe PDF
|
9.94 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.