Despite the recognized importance of datasets in data-driven design approaches, their extensive study remains limited. We review the current landscape of design datasets and highlight the ongoing need for larger and more comprehensive datasets. Three categories of challenges in dataset development are identified. Analyses show critical dataset gaps in design process where future studies can be directed. Synthetic and end-to-end datasets are suggested as two less explored avenues. The recent application of Generative Pretrained Transformers (GPT) shows their potential in addressing these needs.

Datasets in design research: needs and challenges and the role of AI and GPT in filling the gaps

Panarotto M.;
2024-01-01

Abstract

Despite the recognized importance of datasets in data-driven design approaches, their extensive study remains limited. We review the current landscape of design datasets and highlight the ongoing need for larger and more comprehensive datasets. Three categories of challenges in dataset development are identified. Analyses show critical dataset gaps in design process where future studies can be directed. Synthetic and end-to-end datasets are suggested as two less explored avenues. The recent application of Generative Pretrained Transformers (GPT) shows their potential in addressing these needs.
2024
Proceedings of the Design Society
artificial intelligence (AI)
data-driven design
dataset gap
design research
generative design
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1269124
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact