We propose a Minimum-Spanning-Tree-based scheduling and Multi-aggregation framework (MST-M) for communication-efficient Federated Learning. Simulation results show that MST-M saves over 10% in communication costs compared to existing heuristics.

Network for AI: Communication-Efficient Federated Learning with MST-based Scheduling and Multi-Aggregation over Optical Networks

Ibrahimi M.;Musumeci F.;Tornatore M.;
2024-01-01

Abstract

We propose a Minimum-Spanning-Tree-based scheduling and Multi-aggregation framework (MST-M) for communication-efficient Federated Learning. Simulation results show that MST-M saves over 10% in communication costs compared to existing heuristics.
2024
2024 Optical Fiber Communications Conference and Exhibition, OFC 2024 - Proceedings
File in questo prodotto:
File Dimensione Formato  
OFC2024-ruikun.pdf

accesso aperto

: Pre-Print (o Pre-Refereeing)
Dimensione 313.07 kB
Formato Adobe PDF
313.07 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1267828
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact