This paper investigates a novel flux-trapping technique in Type II High-Temperature Superconducting (HTS) rotor coils. This method can be implemented in superconducting electrical machines to take advantage of in situ magnetisation by using the stator coils to energise the rotor HTS coils. This study investigates the feasibility of energizing a rotor HTS coil using a stator winding. The methodology includes modelling and test-rig development and aims to improve practical HTS system implementation for aerospace propulsion applications. Experimental results show that the design is feasible by observing a slow decay of the magnetic field in the air-gap after the external current source has been turned off. The rate of decay of the magnetic field in the airgap is dependent on the resistance of the HTS joint.

Flux Trapping Implementation in High-Temperature Superconducting Magnets for Superconducting Electric Machines

Iacchetti, Matteo F.;
2024-01-01

Abstract

This paper investigates a novel flux-trapping technique in Type II High-Temperature Superconducting (HTS) rotor coils. This method can be implemented in superconducting electrical machines to take advantage of in situ magnetisation by using the stator coils to energise the rotor HTS coils. This study investigates the feasibility of energizing a rotor HTS coil using a stator winding. The methodology includes modelling and test-rig development and aims to improve practical HTS system implementation for aerospace propulsion applications. Experimental results show that the design is feasible by observing a slow decay of the magnetic field in the air-gap after the external current source has been turned off. The rate of decay of the magnetic field in the airgap is dependent on the resistance of the HTS joint.
2024
Coils
High-temperature superconductors
Stators
Rotors
Air gaps
Superconducting magnets
Stator windings
Flux trapping
high-temperature Superconductor
superconducting Electric machines
File in questo prodotto:
File Dimensione Formato  
MT-28_PAPER_Submission_revision_v3_arrangement.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 1.03 MB
Formato Adobe PDF
1.03 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1267736
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact