Train derailments may have catastrophic consequences, and therefore suitable measures should be designed and installed at specific safety-relevant sites to mitigate their effects. Mitigation measures, such as guard rails and containment walls, aim at restraining the motion of the derailed vehicle using suitable derailment containment devices. However, the design and structural sizing of these devices is challenging as the quantification of the loads caused by the impact with the vehicle is complex. The aim of this paper is to extend previous work from the same authors aimed at defining a non-linear multi-body model for the simulation in time-domain of the post-derailment behaviour of a railway vehicle and the impact on a derailment containment wall. The extension presented in this paper is concerned with the model of the interaction of the derailed vehicle with the sleepers and with the ballast. To this aim, an algorithm is introduced to manage the different possible contact conditions the wheels of the vehicle may undergo during the derailment process: contact with the rail, with the sleepers and with the ballast. Then, a model of the impact between the derailed wheels and the sleepers is introduced, and a terramechanic model defining the forces acting on the wheels sinking in the ballast is established. The effect of the accurate modelling of forces exchanged by the derailed wheels with the sleepers and the ballast is quantified for a relevant derailment scenario and shown to be highly relevant to the estimation of the impact loads applied to the containment structure.

Numerical simulation of the post-derailment behaviour of a railway vehicle and its interaction with the infrastructure

Santelia M.;Mazzeo F.;Di Gialleonardo E.;Melzi S.;Bruni S.
2024-01-01

Abstract

Train derailments may have catastrophic consequences, and therefore suitable measures should be designed and installed at specific safety-relevant sites to mitigate their effects. Mitigation measures, such as guard rails and containment walls, aim at restraining the motion of the derailed vehicle using suitable derailment containment devices. However, the design and structural sizing of these devices is challenging as the quantification of the loads caused by the impact with the vehicle is complex. The aim of this paper is to extend previous work from the same authors aimed at defining a non-linear multi-body model for the simulation in time-domain of the post-derailment behaviour of a railway vehicle and the impact on a derailment containment wall. The extension presented in this paper is concerned with the model of the interaction of the derailed vehicle with the sleepers and with the ballast. To this aim, an algorithm is introduced to manage the different possible contact conditions the wheels of the vehicle may undergo during the derailment process: contact with the rail, with the sleepers and with the ballast. Then, a model of the impact between the derailed wheels and the sleepers is introduced, and a terramechanic model defining the forces acting on the wheels sinking in the ballast is established. The effect of the accurate modelling of forces exchanged by the derailed wheels with the sleepers and the ballast is quantified for a relevant derailment scenario and shown to be highly relevant to the estimation of the impact loads applied to the containment structure.
2024
Derailment containment structure
Multi-body
Post-derailment dynamics
Sleeper-impact
Terramechanics
Train derailment
Wheel–ballast contact
File in questo prodotto:
File Dimensione Formato  
s11044-024-09990-4.pdf

accesso aperto

Descrizione: Full Paper
: Publisher’s version
Dimensione 2.91 MB
Formato Adobe PDF
2.91 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1267608
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact