Non-neural machine learning (ML) and deep learning (DL) are used to predict system failures in industrial maintenance. However, only a few studies have assessed the effect of varying the amount of past data used to make a prediction and the extension in the future of the forecast. This study evaluates the impact of the size of the reading window and of the prediction window on the performances of models trained to forecast failures in three datasets of (1) an industrial wrapping machine working in discrete sessions, (2) an industrial blood refrigerator working continuously, and (3) a nitrogen generator working continuously. A binary classification task assigns the positive label to the prediction window based on the probability of a failure to occur in such an interval. Six algorithms (logistic regression, random forest, support vector machine, LSTM, ConvLSTM, and Transformers) are compared on multivariate time series. The dimension of the prediction windows plays a crucial role and the results highlight the effectiveness of DL approaches in classifying data with diverse time-dependent patterns preceding a failure and the effectiveness of ML approaches in classifying similar and repetitive patterns preceding a failure.

Predicting Machine Failures from Multivariate Time Series: An Industrial Case Study

Pinciroli Vago, Nicolò Oreste;Forbicini, Francesca;Fraternali, Piero
2024-01-01

Abstract

Non-neural machine learning (ML) and deep learning (DL) are used to predict system failures in industrial maintenance. However, only a few studies have assessed the effect of varying the amount of past data used to make a prediction and the extension in the future of the forecast. This study evaluates the impact of the size of the reading window and of the prediction window on the performances of models trained to forecast failures in three datasets of (1) an industrial wrapping machine working in discrete sessions, (2) an industrial blood refrigerator working continuously, and (3) a nitrogen generator working continuously. A binary classification task assigns the positive label to the prediction window based on the probability of a failure to occur in such an interval. Six algorithms (logistic regression, random forest, support vector machine, LSTM, ConvLSTM, and Transformers) are compared on multivariate time series. The dimension of the prediction windows plays a crucial role and the results highlight the effectiveness of DL approaches in classifying data with diverse time-dependent patterns preceding a failure and the effectiveness of ML approaches in classifying similar and repetitive patterns preceding a failure.
2024
failure prediction; machine learning, deep learning, predictive maintenance, compressor, blood refrigerator, nitrogen generator, wrapping machine
File in questo prodotto:
File Dimensione Formato  
machines-12-00357-2.pdf

accesso aperto

Dimensione 682.32 kB
Formato Adobe PDF
682.32 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1266294
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact