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Abstract: Non-neural machine learning (ML) and deep learning (DL) are used to predict system
failures in industrial maintenance. However, only a few studies have assessed the effect of varying
the amount of past data used to make a prediction and the extension in the future of the forecast.
This study evaluates the impact of the size of the reading window and of the prediction window on
the performances of models trained to forecast failures in three datasets of (1) an industrial wrapping
machine working in discrete sessions, (2) an industrial blood refrigerator working continuously,
and (3) a nitrogen generator working continuously. A binary classification task assigns the positive
label to the prediction window based on the probability of a failure to occur in such an interval.
Six algorithms (logistic regression, random forest, support vector machine, LSTM, ConvLSTM, and
Transformers) are compared on multivariate time series. The dimension of the prediction windows
plays a crucial role and the results highlight the effectiveness of DL approaches in classifying data
with diverse time-dependent patterns preceding a failure and the effectiveness of ML approaches in
classifying similar and repetitive patterns preceding a failure.

Keywords: failure prediction; machine learning; deep learning; predictive maintenance; compressor;
blood refrigerator; nitrogen generator; wrapping machine

1. Introduction

Predictive maintenance is a strategy that aims to reduce equipment degradation
and prevent failures [1–3] by anticipating their occurrence. It differs from corrective
maintenance (in which the components are used for their entire life span and replaced
when there is a fault) [4,5] and preventive maintenance (in which the replacement and
reparation activities are scheduled periodically) [6,7].

Industrial data are often the result of monitoring several physical variables, which
produces multivariate time series [8,9]. Predicting failures via manual inspection is time-
consuming and costly, mainly because the correlation among multiple variables can be
difficult to appraise with manual approaches. Computer-aided methods can improve
performance and reliability and are less onerous and error-prone [10–12].

Predicting machine failures requires the cycle of data collection, model identification,
parameter estimation, and validation [13]. Alternative models are compared in terms of the
effort needed to train them, the performances they deliver, and the relationship between
such performances and the amount of input data used to make a prediction and the time
horizon of the forecast.

In this paper, we compare alternative models trained for predicting malfunctions.
The focus of the analysis is to study how performances, measured with the macro F1
score metrics, are affected by the length of the input time series fragment used to make
the prediction (reading window—RW) and by the extension in the future of the forecast
(prediction window—PW).

As case studies, we consider the time series made of multiple telemetry variables
collected with Internet of Things (IoT) sensors from three machines: (1) an industrial
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wrapping machine, (2) a blood refrigerator, and (3) a nitrogen generator. The IoT method
used for data collection is stream IoT (i.e., data are collected continuously) [14] and the
protocol is Message Queuing Telemetry Transport (MQTT).

The three datasets are created using IoT sensors that collect physical quantities to mon-
itor the system status. The emission of alert codes by the machines’ hardware signals the
occurrence of anomalous conditions. The goal of the described data-driven predictive main-
tenance scenario is to anticipate the occurrence of a fault (i.e., a malfunctioning indicated
by an alert code) within a future time interval (i.e., the prediction window) using historical
data (i.e., the reading window). Labelled data (i.e., the actual alert codes emitted by the
machine in past work sessions) make it possible to formulate the predictive maintenance
problem as a binary classification task addressed with a fully supervised approach.

Our experimental setting contrasts non-neural machine learning (ML) and deep learn-
ing (DL), which are popular methods for addressing predictive maintenance tasks. ML
methods have been widely used in diverse applications [12,15–18] and recent works also
tested DL methods [19,20]. A few works have compared supervised ML and DL methods
for failure prediction in time series data [20,21] and evaluated the influence of either the
reading window (e.g., [17,18,22]) or of the prediction window (e.g., [16,21,23–25]). Only a
few consider both parameters [12,26].

The contribution of the paper can be summarized as follows:

• We compare three ML methods (logistic regression, random forest, and Support Vector
Machine) and three DL methods (LSTM, ConvLSTM, and Transformer) on three novel
industrial datasets with multiple telemetry data.

• We study the effect of varying the size of both the reading window and the prediction
window in the context of failure prediction and discuss the consequences of these
choices on the performances.

• We define and evaluate the diversity of patterns preceding faults and the datasets’
complexities, showing that DL approaches outperform ML approaches significantly
only for complex datasets with more diverse patterns.

• We show that all methods lose predictive power when the horizon enlarges because
the temporal correlation between the input and the predicted event tends to vanish.

• We highlight that when patterns are diverse, the amount of historical data becomes
influential. However, augmenting the amount of input is not beneficial in general.

• We publish the datasets and the compared algorithms (available at https://github.
com/nicolopinci/polimi_failure_prediction (accessed on 19 May 2024)). The pub-
lished datasets are among the few publicly accessible by researchers in the domain of
fault prediction for industrial machines [27].

The remainder of this paper is structured as follows: Section 2 surveys the related
work, Section 3 presents the methodology adopted for pre-processing the data and mak-
ing predictions, Section 4 presents and discusses the results, and Section 5 presents the
conclusions and proposes future work.

2. Related Work

Anomaly detection and failure prediction are two related fields applied to diverse
data, including time series [28–32] and images [33–35]. This research focuses on failure
prediction applied to multivariate time series data acquired by multiple IoT sensors con-
nected to an industrial machine. Several works have surveyed failure prediction on time
series [31,36,37].

Failure prediction approaches belong to three categories, depending on the availability
and use of data labels: supervised [12,19], semi-supervised [38], and unsupervised [39].
Predicting failures in a future interval given labelled past data can be considered a super-
vised binary classification task [12]. The dataset used in this research is labelled, making
supervised methods a viable option.

ML and DL are two popular approaches for failure prediction in time series data.
For supervised failure prediction, ML methods include decision trees (DT) [15,16], gradient
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boosting (GB) [16,17], random forests (RF) [15–18], support vector machines (SVM) [15,16],
and logistic regression (LR) [12,18]. DL methods include neural network architectures such
as recurrent neural networks (RNNs) [20] and convolutional neural networks (CNNs) [20].
Some works have compared supervised ML and DL methods for failure prediction in time
series data [20,21].

RF is one of the most used approaches [12,15–18,22,23,25,30,40–45]. The work in [25]
compares RF with ML and DL approaches, including Neural Networks and SVM, and shows
the superiority of RF in terms of accuracy for a prediction window not longer than 300 s
for a case study of wind turbines. However, accuracy does not consider class unbalance
and is not appropriate for evaluating the performance of failure prediction algorithms [31].
The work in [42] also considers the case of wind turbines and presents only the perfor-
mances of RF using accuracy, sensitivity, and specificity for a prediction window of 1 h.
The work in [22] also uses RF on wind turbine data and measures performances using
precision and recall for varying the reading windows up to 42 h, showing rather poor
performances. Other applications of RF in predictive maintenance range from refriger-
ator systems [45] to components of vending machines [43], vehicles [30], and chemical
processes [17].

SVM is another approach commonly used in supervised failure
prediction [12,15,16,25,26,43,46–48]. The work in [26] presents an application of SVM
to railway systems and evaluates the performances using False Positive Rate (FPR) and
recall. It is one of the few approaches that consider variation in PW and RW. However,
the assessment of the contribution of each window is not performed because they were
changed together. The work in [16] compares ML algorithms (DT, RF, GB, and SVM) and
shows that GB outperforms the other approaches, followed by RF. The work in [15] com-
pares the accuracy of six ML algorithms on industrial data, including SVM, RF, and DT. It
shows that DT not only surpasses RF but is also more interpretable. However, precision
and recall would be necessary to evaluate the quality of predictions, as the dataset is
likely unbalanced. The work in [18] also measures performances using accuracy (for a
balanced dataset), compares RF, LR, and Ctree, and shows that (1) RF outperforms the
other algorithms and (2) the reading window size does not have a significant impact on
the performances.

A few works contrast ML and DL predictors. The work in [21] compares the per-
formances using Area Under the Curve (AUC) and shows that a small fully-connected
neural network outperforms Naïve Bayes. However, other popular methods (e.g., SVM,
LR, LSTM) are not evaluated. The work in [20] is one of the few approaches considering a
comparison between two DL approaches (a CNN and LSTM) and shows (1) the superiority
of the convolutional network in terms of accuracy and (2) the decrease in accuracy as the
prediction window increases. However, additional metrics would be necessary to evaluate
performances on a likely unbalanced dataset.

Considering alternative DL approaches, aside from the commonly employed LSTM-
based architectures [49–51], there is noteworthy research interest in ConvLSTM models.
The work in [52] finds that ConvLSTM performs similarly to random forest (RF) when
predicting faults in wind turbine gearbox systems. The work in [53] shows the effectiveness
of a ConvLSTM-based architecture for failure detection. Both works do not analyze the
impact of the size of RW and PW nor compare alternative DL architectures. ConvLSTM
has also proved effective in forecasting the value of telemetry variables, a preliminary step
for fault prediction in diverse systems [54–56]. Transformer-based architectures have been
applied to anomaly detection [57,58], and fault diagnosis [59,60]. The work in [61] shows the
effectiveness of a Transformer-based architecture for the fault prediction task in an Electric
Power Communication Network. In contrast to LSTM-based architectures, Transformers
can capture long-range dependencies and offer parallel processing capabilities, which also
makes them suitable for time series tasks over long intervals.

Several works investigate the failure prediction task by forecasting the occurrence of a
failure within a pre-determined time frame [17,18,21,26]. Some studies evaluate the impact
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of either the reading window length [17,18,26] or the prediction window length [21,23,24].
Only a few [12,26] evaluate the impact of varying the reading and the prediction window.
Considering the surveyed approaches, the work in [12] is the only one that proposes a
comparison between different ML algorithms varying both the RW and PW and assessing
the contribution of each. However, the comparison does not consider DL algorithms.

In summary, a few works on supervised failure prediction for multivariate time series
evaluate the variation of both RW and PW. However, none compare ML and DL algorithms
in this respect. Moreover, none of the surveyed papers consider the presence of discrete
sessions in the telemetry time series, which is instead the case of the wrapping machine
dataset. Furthermore, the related works very rarely disclose the industrial datasets used in
the experiments, which hinders the reproducibility of research and, ultimately, the progress
of the status of the art.

Our work investigates the contribution of both the RW and PW variations and com-
pares diverse ML and DL approaches on three novel industrial datasets featuring both
discrete session-based and continuous time machines. The collected datasets, which derive
from the telemetry of real machines and comprise hardware-produced failure alerts as
ground truth, are available in a public repository.

3. Materials and Methods

This section outlines the experimental design employed to evaluate the impact of the
reading/prediction windows and of the hyperparameters on the performance of ML and
DL approaches. It focuses on the materials (the datasets, presented in Section 3.1) and
the methods (the data pre-processing procedures, the experimental methodology and the
performance metrics, presented in Sections 3.2–3.6).

3.1. Datasets

This section presents the three datasets used in this research. The datasets have been
acquired from an industrial company operating in the remote control of industrial and
domestic appliances and have been selected based on their different complexities (defined
using spectral entropy, as detailed in Section 3.2) and diverse dynamics and applications.
Wrappers represent machines that operate in discrete sessions. Blood refrigerators display
quasi-periodic dynamics over a limited period (in the order of tens of minutes). Nitrogen
generators exhibit slow dynamics with regular patterns that repeat over extended periods
(in the order of several hours).

3.1.1. Wrapping Machine

Wrapping machines are systems used for packaging and comprise components such
as motors, sensors, and controllers. The monitored exemplars are semi-automatic machines
that wrap objects carried on pallets with stretch film. Each machine comprises the turntable,
a central circular platform for loading objects; the lifter, a moving part that contains the
wrapping film reel; the tower, a column on which the lifter moves; the platform motor, a gear
motor controlling the movements of the turntable with a chain drive, and the lifting motor,
an electric motor for lifting the carriage.

The functioning of the machine consists of cycles with irregular lengths, depending
on the size of the wrapped objects. A cycle consists of five steps:

1. Loading the products on a pallet at the centre of the rotating platform.
2. Tying the film’s trailing end to the pallet’s base.
3. Starting the wrapping cycle, executed according to previously set parameters.
4. Manually cutting the film (through the cutter or with an external tool) and making it

adhere to the wrapped products.
5. Removing the wrapped objects.

The dataset contains records from sensors installed on a wrapping machine collected
over one year (1 June 2021 to 31 May 2022). The machine is equipped with sensors
attached to different components, such as the rotating platform and the electric motors.
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An acquisition system gathers data from sensors and sends them to a storage server. Sensors
measure over 100 quantities (e.g., temperatures, motor frequencies, and platform speeds).
Each data item records a timestamp and the last value measured by a sensor. Data are
transmitted only when at least one sensor registers a variation for saving energy, resulting
in variable data acquisition frequency. Data are grouped into work sessions that represent
periods in which the machine is operating. Each work session has a starting point, manually
set by the operator, corresponding to the start of an interval during which the machine
wraps at least one pallet. A work session ends when the machine finishes wrapping the
pallets or when a fatal alert occurs. Session-level metrics are collected, too, such as the
number of completed pallets and the quantity of consumed film. The dataset contains
information about alerts thrown by the machine during the power-on state (i.e., when
the machine is powered on, which does not necessarily mean it is producing pallets).
An alert is a numerical code that refers to a specific problem that impacts the functioning of
the machine.

Depending on the changes detected by sensors, the irregular sampling time is ad-
dressed by resampling the time series with a frequency of 5 s, which gives a good trade-off
between memory occupation and signal resolution. Missing values are filled in using the
last available observation because the absence of new measurements indicates no change
in the recorded value.

3.1.2. Blood Refrigerator

Blood refrigerators are systems designed to store blood safely and its derivatives at
specific temperatures. Each unit includes different components. Compressor: pumps the
refrigerant, increasing its pressure and temperature. Condenser: cools down and condenses
the refrigerant. Evaporator: causes the refrigerant to evaporate the inside of the unit for
cooling. Expansion Valve: regulates the flow of refrigerant into the evaporator. Interconnect-
ing Tubing: facilitates the movement of the refrigerant between the compressor, condenser,
expansion valve and evaporator.

A refrigeration cycle lasts ≈10 min and comprises the following phases:

1. Compression: The cycle begins with the compressor drawing in low-pressure, low-
temperature refrigerant gas. The compressor then compresses the gas, which raises
its pressure and temperature.

2. Condensation: The high-pressure, high-temperature gas exits the compressor and
enters the condenser coils. As the gas flows through these coils, it releases heat, cools
down, and condenses into a high-pressure liquid.

3. Expansion: This high-pressure liquid then flows through the capillary tube or expan-
sion valve. As it does, its pressure drops, causing a significant drop in temperature.
The refrigerant exits this stage as a low-pressure, cool liquid.

4. Evaporation: The low-pressure, cool liquid refrigerant enters the evaporator coils
inside the refrigerator. Here, it absorbs heat from the interior, causing it to evaporate
and turn back into a low-pressure gas. This process cools the interior of the refrigerator.

5. Return to Compressor: The low-pressure gas then returns to the compressor and the
cycle starts over.

The dataset includes information from IoT sensors that measure 58 variables (e.g.,
the status of the door of the refrigerator, its temperature, and energy consumption). The se-
ries comprises data from 31 October 2022 to 30 December 2022 and records only when a
variable changes value. This results in an irregular sampling period varying from a few
seconds to one hour. For this reason, we resampled the dataset using the median of the
original sampling frequency (i.e., ≈34 s).

3.1.3. Nitrogen Generator

Nitrogen generators separate the nitrogen from the other gasses, such as oxygen,
in compressed air. They include: an air compressor, to supply the compressed air; Carbon
Molecular Sieves (CMSs), to filter other gasses from the nitrogen; absorption vessels, to take the
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nitrogen not filtered out by the CMS; towers, to increase the nitrogen production. A tower
comprises one CMS, two or more absorption vessels, and the space where the division
between nitrogen and oxygen takes place; valves, to direct the flow of air and nitrogen
and regulate the absorption of the nitrogen by the vessels; a Buffer Tank, to store the
purified nitrogen.

The generator works as follows:

1. The air compressor compresses the air to a high pressure and supplies it to the machine.
2. In the towers, the CMS adsorbs smaller gas molecules, such as oxygen, while allowing

larger nitrogen molecules to pass through the sieve and go into the vessels.
3. The buffer tank receives the nitrogen gas from the vessels through the valves.
4. The valves reduce the pressure in the current working tower to release the residual

gasses, whereas in the other towers, the pressure is increased to restart the process.

Each phase lasts ≈ 8 h, but the CMS air pressure reduces only in the last ≈ 2.5 h.
The dataset includes information from IoT sensors installed in the generator. A set of

64 variables measures the essential work parameters (e.g., the nitrogen and the CMS air
pressure). The series comprises data from 1 August 2023 to 29 September 2023 and contains
values recorded when a change in a variable occurs. This results in an irregular sampling
period varying from a few seconds to four hours. For this reason, we resampled the dataset
using 1 min as frequency.

3.2. Data Processing

Data processing is an essential step in analyzing each dataset, involving selecting
pertinent variables associated with physical quantities and the resampling period. The
anomalous patterns preceding faults can be considered to characterize the diversity of
the datasets. To this end, the dataset is first normalized using min-max normalization,
and then a set of fixed-size windows preceding each fault is defined. For every pair of such
windows, denoted as wi and wj, the Euclidean distance, dijkv, is calculated between pairs
of data points at corresponding positions, indexed by k, for each variable, represented as
v. The distance is computed between the points pikv and pjkv. The diversity of patterns is
quantified as the mean value scaled in the range [0, 1]:

m = meanijkv(dijkv) (1)

To characterize the complexity of a dataset as a whole, we compute the mean of the
spectral entropies of the considered time series [62], as implemented in the antropy library
(https://raphaelvallat.com/antropy/build/html/generated/antropy.spectral_entropy.html
(accessed on 19 May 2024)), normalized between 0 and 1 and using the fft method [63].
Higher entropy values correspond to a higher time series complexity.

3.2.1. Wrapping Machine

The first phase is feature selection. Since not all the quantities are equally relevant,
only 13 are kept based on the data description provided by the manufacturer and are
summarized in Table 1. Most removed features were redundant or had constant values.
For example, such features as the employed recipe and the firmware version are excluded
because they do not describe the system dynamics, whereas such features as the variation
of a variable value during the session are eliminated because they can be derived from the
initial and final values.

The second phase is selecting relevant alert codes to anticipate machine malfunction.
Figure 1 presents the distribution of the alert codes most relevant according to the manufac-
turer and Table 2 explains their meaning. Most of them are rare (i.e., are observed less than
10 times), and alerts 11 (platform motor inverter protection) and 34 (machine in emergency
conditions) are the most common ones. Alert 34 is thrown when the operator presses an
emergency button. However, this occurrence heavily depends on human behaviour be-
cause the operators often use the emergency button as a quick way to turn the machine off,

https://raphaelvallat.com/antropy/build/html/generated/antropy.spectral_entropy.html
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as confirmed by the plant manager. For this reason, alert 34 is discarded, and the prediction
task focuses only on alert 11. This alert is fundamental for the correct functioning of the
machine because the inverter controls the frequency or power supplied to the motor and
thus controls its rotation speed. The improper control of the rotation speed hinders the
wrapping operation.

Table 1. The 13 variables obtained after pre-processing. The minimum and maximum values are
reported for each variable and the measurement unit. The “Movement” column indicates whether
the variable is used to determine whether any motors are moving.

Variable Name Minimum Maximum Unit Movement

Platform motor frequency 0 5200 Hz ✓
Current speed cart 0 100 % ✓

Platform motor speed 0 100 % ✓

Lifting motor speed 0 88 RPM (Revolutions
per Minute) ✓

Platform rotation speed 0 184 RPM ✓
Slave rotation speed 0 184 m/min ✓

Lifting speed rotation 0 73 m/min ✓
Flag roping 0 31 µm

Platform position 0 359 °
Temperature hoist drive 0 55 °C

Temperature platform drive 0 61 °C
Temperature slave drive 0 55 °C

Total film tension −100 9900 %

5 8 11 19 34 35
Alert code

101

102

103

Nu
m

be
r o

f a
le

rts

Figure 1. Distribution of the alert codes on a logarithmic scale. Alert 34 is the most frequent but must
be discarded because it is unreliable. Alert 11 is the second most frequent. The remaining alerts have
less than ten occurrences in the entire dataset.

Table 2. Explanation of the wrapping machine alert codes.

Alert Description

5 Loose carriage belt alarm
8 Film end alarm
11 Platform motor inverter protection
19 Carriage motor inverter protection
34 Machine in emergency conditions
35 Table phonic wheel sensor fault
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In the examined dataset, alert 11 is preceded by diverse time-dependent patterns,
and the mean Euclidean distance defined in Equation (1) is ≈0.26 for a window of 15 min.
Figure 2 shows two examples of patterns preceding faults. The spectral entropy is ≈0.72.
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Figure 2. Examples of diverse patterns preceding faults in the wrapping machine dataset. The patterns
involve three variables and the faults are displayed as dashed vertical lines. The example on the left
shows two faults observed on 15 June 2021. They are preceded by a slow decrease in the film tension,
and after the second fault, the slave motor has a speed of zero. On the right, the fault observed on
30 June 2021 is preceded by a sudden acceleration of the platform rotation speed, whereas the slave
motor does not move, but the film tension remains constant.

The work session boundaries provided in the dataset also depend on human inter-
vention. Some inconsistent session-level metrics and a large number of sessions that do
not produce any pallets are observed. A more reliable definition of a work session can be
inferred from the telemetry variables. Intuitively, a session start time is introduced when at
least one motion variable increases its value, and a session end time is created when all
motion variables have decreased their value in the last ten minutes. Algorithm 1 specifies
how sessions are defined.
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Algorithm 1 Computation of session boundaries

Require: ds, the dataset containing, for each timestamp, an array with the values of the
movement variables, structured as a hash map with the timestamp ts as the key and
the movement variables array mv as the value

Ensure: sessions, a map that associates a session number to each timestamp and −1 to
out-of-session timestamps

1: latest← NULL
2: f lag← false
3: sessions← HashMap()
4: counter ← 1
5: for ts ∈ ds.timestamps do
6: sessions[ts]← −1
7: if ts ̸= min(ds.timestamps) then
8: pts← max({x : x ∈ ds.timestamps and x < ts})
9: δ← ds[ts].mv− ds[pts].mv

10: if ∃ e ∈ δ | e > 0 then
11: latest← ts
12: f lag← true
13: sessions[ts]← counter
14: else
15: if f lag = true then
16: sessions[ts]← counter
17: if ts− latest > 10 min then
18: counter ← counter + 1
19: f lag← false
20: end if
21: end if
22: end if
23: else
24: latest← ts
25: end if
26: end for

Figure 3 shows the distribution of the work session duration computed from the
telemetry data. The idle time intervals between sessions are neglected in further processing.
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Figure 3. Distribution of the duration of work sessions.
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After pre-processing, it is possible to compute the distance of each data sample within
a work session to the successive alert, i.e., the Time to Failure (TTF).

3.2.2. Blood Refrigerator

The data comprise variables directly measured by sensors (base variables) and vari-
ables derived from the base ones. For instance, the base variable “Door status” represents
the status of the refrigerator door and has an associated derived variable “Door opening
daily counter”, which counts every day when the door is open. We keep the 12 most
significant variables, shown in Table 3.

Table 3. The 12 variables of the blood refrigerator.

Variable Name Minimum Maximum Unit

Product temperature Base −30.8 5.7 °C
Evaporator temperature base −37.8 18.2 °C
Condenser temperature base 15.8 36.7 °C

Power supply 134.0 146.0 V
Instant power consumption 0.0 661.0 W

Signal −113.0 85.0 dBm
Door alert 0 1
Door close 0 1
Door open 0 1

Machine cooling 0 1
Machine defrost 0 1
Machine pause 0 1

The dataset also contains alarms. Specifically, the dataset originally contained 15 types
of alarms (Alarm Probe Failure, Condenser Probe Failure, Control Probe, Defrost Timeout
Failure, Evaporator Probe Failure, Excessive Compressor Use Failure, High Condenser
Temperature, High-Temperature Compartment, High Product Temperature, Low Evapora-
tor Temperature, Low-Temperature Product, Protection Against Anti-Freezing, Protection
Against Over-Heating, Blackout, and Device offline), but those described as critical by the
manufacturer are the ones presented in Table 4. After analyzing two such alarms, we have
selected “alarm 5” as the prediction target because “alarm 1” has too few occurrences, mak-
ing the analysis of performances unfeasible. Storing blood at low temperatures is crucial,
as higher temperatures can lead to bacterial growth [64], hemolysis [65], and increased
risk of adverse reactions, including life-threatening conditions [66]. Figure 4 presents the
typical anomalous pattern preceding a fault for three variables. In this case, the mean
Euclidean distance defined in Equation (1) is ≈0.21 for a window of 15 min, ≈20% less
than the one of the wrapping machine dataset. The spectral entropy is ≈0.59, indicating a
lower complexity with respect to the wrapping machine dataset.

Table 4. The alarms of the blood refrigerator.

Name of the Alarm Description Number of Data Points

alarm 1 High-Temperature Compartment 2
alarm 5 High Product Temperature 188
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(a) Instantaneous power consumption.

14:00 15:00 16:0014:30 15:30

Time [hh:mm]

30

20

10

0

10

Ev
ap

or
at

or
 te

m
pe

ra
tu

re
 [°

C]

(b) Evaporator temperature.
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(c) Product temperature.

Figure 4. Examples of patterns preceding a fault in a blood refrigerator, observed on 22 November
2022. Before the fault (shown by a dashed line), the instant power consumption increases and then
decreases after a short time, the evaporator temperature decreases by ≈40 ◦C after a sudden increase,
and the product temperature has an increase.

3.2.3. Nitrogen Generator

The data are collected by IoT sensors over two months (1 August 2023 to 29 September
2023). We have considered only the variables directly measured from the sensors and
discarded the derived ones. Table 5 shows the relevant variables, which record the changes
in the physical status of the system.

Table 5. The 4 variables of the nitrogen generator.

Variable Name Minimum Maximum Unit

CMS air pressure 0.0 9.5 bar
Oxygen base concentration 5.0 500.0

Nitrogen pressure 0.0 9.0 bar
Oxygen over threshold 0 1

The nitrogen generator can produce different alarms, including “Air pressure too
high” and “Oxygen failure—Second threshold reached”. However, only one type of
alarm is present in the dataset: “CMS pressurization fail”, whose frequency is shown in
Table 6. A failure in CMS pressurization can hinder the separation of oxygen and nitrogen,
as mentioned in [67]. Figure 5 presents the typical anomalous pattern of three variables
preceding a fault. The mean Euclidean distance defined in Equation (1) is ≈0.09 for a
window of 15 min, ≈65% less than the one of the wrapping machine dataset, and ≈57%
less than the one of the blood refrigerator dataset. The spectral entropy is ≈0.53, indicating
a lower complexity with respect to both the wrapping machines and the blood refrigerator
datasets.
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Table 6. The alarm of the nitrogen generator.

Name of the Alarm Description Number of Data Points

CMS pressurization fail Pressurization of nitrogen sieve failed 54
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(a) Oxygen concentration.
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(b) CMS air pressure.
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(c) Nitrogen pressure.

Figure 5. A typical pattern in a nitrogen generator, observed on 1 August 2023. In this case,
before a fault (indicated with a grey dashed line), the oxygen concentration drops, the CMS air
pressure decreases by ≈8 bar, and the nitrogen pressure decreases by ≈4 bar, making the nitrogen
generation impossible.

3.3. Definition of the Reading and Prediction Windows

The task for comparing ML and DL methods is predicting the occurrence of alerts
within a future time interval (i.e., a prediction window PW) given historical data (i.e.,
a reading window RW). This task is formulated as a binary classification, which assigns
a label (failure/no failure) to each RW [31]. Failures were provided by the manufacturer,
which measured them using sensors installed in the machines. A failure label associated
with an RW is assigned when the corresponding PW contains at least an alert code. It
is interpreted as a high probability of an alert occurring in the PW next to it. Given a
session of length N and an RW size SRW , N − SRW + 1 reading windows are extracted.
Each RW starts at timestamp ti, with i = 1 . . . N − SRW + 1. For an RW (tj . . . tj + SRW),
the corresponding PW starts at time stamp tj + SRW + 1. The proposed approach can be
applied in the absence of sessions without loss of generality because the entire interval of
the dataset can be considered as one session.

The size of RWs depends on the characteristics of the datasets. For wrapping machines,
it ranges from 10 min (the minimum session duration) to 35 min. For blood refrigerators, it
ranges from 10 min (a cycle duration) to 30 min. For nitrogen generators, it ranges from
10 min to 30 min because (1) the system shows minimal long-term drift, making longer
historical trends irrelevant, and (2) short RWs allow for timely intervention in case of
failures, without the need to collect a large amount of data before predicting a failure.
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3.4. Class Unbalance

Alerts are anomalies and thus, by definition, rarer than normal behaviours [68].
For this reason, the number of RWs with the label no failure is significantly greater than
that of RWs with the label failure, leading to a heavily imbalanced dataset. For all the
datasets, Random UnderSampling (RUS) [69,70] is applied to balance the class distribu-
tion by making the cardinality of the majority class comparable to that of the minority
class. RUS has demonstrated its effectiveness in diverse fields where the class imbalance is
common, such as astrophysics [71,72], geoscience [73], and industrial informatics [74–76].
The algorithm randomly selects and removes observations from the majority class until
it achieves the desired equilibrium between the two classes. In the case of the wrapping
machine, RUS is applied separately on each train set (comprising four folds) and test set
(one fold) for each combination of RW and PW sizes. To prevent the presence of similar
data in the train and test sets (i.e., partially overlapping data), after the definition of the test
set, the partially overlapping windows in the train set are neglected by RUS. The RUS step
is applied 10 times, as proposed in [12]. In the blood refrigerator and nitrogen generator
datasets, RUS is applied on the train and validation sets during the training phase, but not
on the test set, where the test F1 score is evaluated by assigning a different weight to the
failure and no failure classes in order to account for the unbalance.

3.5. Algorithms and Hyperparameter Tuning

The algorithms for which the influence of the RW and PW size is assessed include
logistic regression (LR), as a representative of the Generalized Linear Models family [77],
random forest (RF), as a representative of the Ensemble Methods family [78], Support
Vector Machine (SVM), as a representative of the Kernel Methods family [79], Long Short-
Term Memory (LSTM) [80], Transformers [81] and ConvLSTM [54], as representatives of
DL methods.

For SVM, RF, and LR, the implementation used in this work is from the Python li-
brary scikit-learn (https://scikit-learn.org/stable/ (accessed on 19 May 2024)), whereas
DL models use TensorFlow (https://www.tensorflow.org/ (accessed on 19 May 2024)).
The tested network architectures of the DL models and the hyperparameters resulting from
the hyperparameter search of all models can be found in the project repository (available at
https://github.com/nicolopinci/polimi_failure_prediction (accessed on 19 May 2024)).

For LR, C is the inverse of the regularization strength, and smaller values indicate a
stronger regularization.

In the case of RF, the search varies the number of internal estimators NE (i.e., the num-
ber of decision trees) and the maximum number of features that can be selected at each
split (in this context, a feature is defined as the value of a variable at a specific timestamp).

In the case of SVM, the C coefficient is the regularization hyperparameter multiplied
by the squared L2 penalty and is inversely proportional to the strength of the regularization.
Small values of C lead to a low penalty for misclassified points, whereas if C is large, SVM
tries to minimize the number of misclassified examples.

Considering LSTM, in the case of the wrapping machine, the only hyperparameters
that vary are the type of LSTM layer, Unidirectional or Bidirectional, and the loss function.
For the latter, we compare the sigmoidF1 loss with β = 1 and η = 0 (from now on referred
to as F1 loss) [82] and the Binary Cross-Entropy (BCE) loss. The use of BiLSTM has been
shown to be effective in the works [80,83], which focus on forecasting problems. The two
compared loss functions have been proven to deliver the top performances in [82]. Each loss
function serves a distinct purpose and offers advantages and disadvantages. The F1 loss
considers precision and recall, thus providing a balanced model performance evaluation.
In this case, minimizing the F1 loss means maximizing the F1 score for the “Failure” class
(i.e., reducing the missed “Failure” occurrences). The BCE loss is a widely used loss
function for binary classification tasks and is symmetric with respect to the two classes. It
measures the dissimilarity between predicted probabilities and target labels, encouraging
the model to improve its probability estimations. BCE loss encourages the model to output

https://scikit-learn.org/stable/
https://www.tensorflow.org/
https://github.com/nicolopinci/polimi_failure_prediction
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probabilities for each class, providing richer information about the model’s confidence in
its prediction. However, it does not inherently consider the interplay between precision
and recall and is not the most suitable choice for tasks where a balance between precision
and recall is essential.

In the case of Transformers, the BCE loss function is employed [84], and two hyperpa-
rameters are relevant: the number of attention heads and the number of transformer blocks.
The former affects the capacity of the model to capture diverse patterns and relationships in
the data, with higher values improving the ability to discern patterns. The latter increases
the complexity of the model, thus allowing it to capture more complex patterns while
augmenting the risk of overfitting.

In the case of ConvLSTM [54], BCE is chosen as the loss function, and the hyperpa-
rameter search (described in the project repository) has varied both the kernel size and the
number of filters. Increasing the kernel size extends the receptive field, and augmenting the
number of filters allows for capturing more diverse and complex spatiotemporal features.

3.6. Training and Evaluation

Results are assessed using the macro F1 score, which extends the F1 score, defined
in Equation (2). The F1 score depends on precision and recall, defined, respectively, in
Equations (3) and (4), where TP stands for the number of true positives, FP for the num-
ber of false positives, TN for the number of true negatives, and FN for the number of
false negatives.

F1 = 2 · PREC · REC
PREC + REC

(2)

PREC =
TP

TP + FP
(3)

REC =
TP

TP + FN
(4)

The macro F1 score is the average of the F1 scores computed for each class indepen-
dently. To compute the F1 score for each class, the model treats that class as the positive
class and the other class as the negative class. Let F1, f be the F1 score computed when class
“Failure” is the positive one and F1,n be the F1 score computed when class “No failure” is
the positive one. Then, the macro F1 score is given by Equation (5).

MF1 =
F1, f + F1,n

2
(5)

The macro F1 score allows for a balanced assessment of the model’s performance, as it
weighs both the “Failure” and “No failure” classes equally, different than, e.g., accuracy.
Hence, macro F1 is not biased towards the majority class (i.e., “No failure”).

The range of RW and PW sizes is adapted to the dynamics of the machines (a slow
varying behaviour requires testing fewer window sizes than a fast-changing one). For the
wrapping machine dataset, we use nine values for the PW (0.25, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, and
4 h) and six values for the RW (10, 15, 20, 25, 30, and 35 min). For the blood refrigerator, we
use four values for the PW (0.5, 1, 1.5, and 2 h) and five values for the RW (10, 15, 20, 25,
and 30 min). For the nitrogen generator dataset, we use six values for the PW (0.5, 1, 1.5,
2, 3, and 5 h) and five values for the RW (10, 15, 20, 25, and 30 min). For all the datasets,
the minimum PW size is set to the smallest time span necessary to avoid an unrecoverable
machine failure so that the operator can intervene.

The validation procedure is also adapted to the characteristics of the different use
cases. In the wrapping machine dataset, there are only 13 alarms, which yield ≈500 failure
RWs in the whole time series. Thus, the number of failure RWs in the test set would be
too small to test the performances adequately. Thus, we adopt a training and evaluation
procedure based on k-fold cross-validation (with k = 5). Each fold is identified by fk with
k ∈ [1, 5]. The procedure also relies on 10 RUS instances rik for the test set and 10 RUS



Machines 2024, 12, 357 15 of 28

instances pik for the train set, six algorithms aj, with j ∈ {RF, LR, SVM, LSTM, ConvLSTM,
Transformer}, and the hyperparameter settings for each algorithm (hjl). Each combination
of RW and PW sizes is used to compare the models with a procedure consisting of six steps:

1. For each k-fold split, the data are divided into a train set TrSk, comprising the folds
fm with m ̸= k, and a test set TeSk, corresponding to fk.

2. For each TrSk and TeSk, RUS is applied to balance the classes, obtaining 10 RUS
instances rik for the test set and 10 RUS instances pik for the train set.

3. For each pik, the six presented algorithms aj, with their hyperparameters hjl , are
trained on the train folds and evaluated on the RUS instance rik on the test fold,
obtaining j× l macro F1 scores on the test set, denoted as sikjl .

4. For each algorithm and hyperparameter setting, the mean of the results is computed
as mjl = meani,k(sikjl).

5. Then, the maximum macro F1 score for each algorithm is computed as bj = maxl(mjl).
6. Finally, the best macro F1 score is computed as Bs = maxj(bj), and the best algorithm

as Ba = argmaxj(bj).

For the blood refrigerator and nitrogen generator datasets, a higher number of failure
RWs is available; thus, k-fold cross-validation is unnecessary. Each dataset is first divided
into a train, validation, and test set. The model is trained on the training set, and the best
combination of hyperparameters is determined as the one with the best macro F1 score
on the validation set using Bayesian Optimization. Finally, the best configuration of each
algorithm is evaluated on the test set.

4. Results

This section reports the macro F1 scores (from now on referred to as F1 scores) and
the macro average precision and recall of the compared algorithms computed with the
abovementioned procedure. It discusses the effect of RW and PW selection on SVM, RF,
LR, LSTM, ConvLSTM, and Transformer prediction performances.

4.1. Wrapping Machine

In the wrapping machine case, the cardinality of the minority class samples is signif-
icantly influenced by both the PW and the RW, as reading windows spanning multiple
sessions are neglected. Figure 6 shows the number of RWs with class “Failure” (i.e., the sup-
port) as RW and PW sizes vary. Note that a longer PW is more likely to contain a failure,
resulting in a higher probability of the RW being classified as “Failure". Consequently,
the number of RWs classified as “Failure” increases for larger PWs (i.e., the support in-
creases). The support also increases with the decrease in RW size because more RWs are
paired to a PW of class “Failure”.

Figure 7 shows the best algorithms for each reading and prediction window size (i.e.,
the Ba values) and their F1 scores (i.e., the Bs values), and Table 7 compares the F1 scores of
each algorithm as PW and RW vary (i.e., the bj values). In both cases, lighter backgrounds
indicate better performances. Missing results correspond to cases in which at least one fold
does not contain RWs of class "Failure”.

Table 7, Figures 7 and 8 show that the F1 score, on average, increases as the RW size
increases until a peak at 20 min and decreases afterwards. Smaller train sets and the lesser
relevance of past information can explain this behaviour [85,86]. For example, considering
a PW of 15 min, the support increases of a factor ≈4 from an RW of 30 min to an RW
of 10 min. The work in [86] reports that decreasing the number of train set samples (in
this case, the number of RWs in the train set) can reduce performances and that the best
results are achieved for the greatest number of training samples. The work in [85] finds that
increasing the amount of historical data (in this case, the RW length) does not necessarily
lead to better performance, as irrelevant information may be provided to the predictor.
Similarly to [12], the performances tend to decrease as the PW size increases, with the best
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performances observed for the smallest PW size. This pattern depends on the fact that the
predictions for smaller PWs exploit more recent data than for larger PWs.
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Figure 6. The number of RWs with class “Failure” as RW and PW sizes vary in the wrapping machines
dataset. The highest number of “Failure” labels is observed for short RWs and long PWs. Darker
colours indicate a higher number of “Failure” RWs.
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Figure 7. Comparison of the best F1 scores for each combination of RW and PW sizes for the wrapping
machine case study. The heatmap shows each combination’s best method and the corresponding F1

score. Lighter background colours correspond to better results.
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Table 7. Classification results on the F1 metrics for the wrapping machine case study, varying both
the reading and prediction window, for SVM, RF, LR, LSTM, ConvLSTM, and Transformers. A lighter
background corresponds to better results. Empty cells indicate that the results cannot be computed
due to the lack of “Failure” labels in some folds.

Prediction Window (PW)
Reading Window (RW) Algorithm

0.25 h 0.5 h 1.0 h 1.5 h 2.0 h 2.5 h 3.0 h 3.5 h 4.0 h

ConvLSTM 0.684 0.691 0.577 0.554 0.533 0.517 0.524 0.506 0.483

LR 0.604 0.598 0.549 0.518 0.503 0.498 0.532 0.514 0.516

LSTM 0.758 0.743 0.634 0.599 0.583 0.536 0.550 0.540 0.512

RF 0.577 0.571 0.429 0.417 0.402 0.388 0.382 0.381 0.391

SVM 0.697 0.654 0.590 0.543 0.521 0.517 0.520 0.485 0.476

10 min

Transformer 0.714 0.646 0.585 0.584 0.540 0.486 0.498 0.482 0.452

ConvLSTM 0.787 0.683 0.554 0.530 0.547 0.532 0.558 0.514 0.498

LR 0.742 0.548 0.516 0.530 0.513 0.483 0.526 0.539 0.540

LSTM 0.846 0.753 0.671 0.590 0.612 0.593 0.593 0.547 0.562

RF 0.565 0.391 0.410 0.363 0.361 0.376 0.365 0.349 0.367

SVM 0.753 0.659 0.532 0.524 0.513 0.518 0.505 0.471 0.477

15 min

Transformer 0.818 0.677 0.613 0.567 0.563 0.506 0.513 0.503 0.477

ConvLSTM 0.807 0.699 0.567 0.559 0.531 0.546 0.551 0.537 0.489

LR 0.789 0.696 0.587 0.554 0.517 0.518 0.555 0.585 0.563

LSTM 0.861 0.798 0.665 0.614 0.559 0.599 0.611 0.557 0.557

RF 0.538 0.448 0.404 0.393 0.381 0.389 0.379 0.417 0.384

SVM 0.783 0.568 0.499 0.468 0.486 0.485 0.481 0.443 0.468

20 min

Transformer 0.799 0.649 0.584 0.559 0.543 0.513 0.516 0.478 0.438

ConvLSTM 0.744 0.635 0.527 0.541 0.512 0.557 0.523 0.561 0.524

LR 0.735 0.620 0.552 0.531 0.519 0.530 0.580 0.608 0.575

LSTM 0.783 0.686 0.623 0.612 0.618 0.577 0.579 0.568 0.538

RF 0.641 0.433 0.395 0.379 0.401 0.433 0.410 0.401 0.378

SVM 0.613 0.512 0.436 0.411 0.416 0.436 0.482 0.413 0.435

25 min

Transformer 0.772 0.660 0.517 0.529 0.504 0.493 0.492 0.449 0.450

ConvLSTM 0.426 0.490 0.464 0.437 0.470 0.569 0.569 0.528

LR 0.456 0.510 0.474 0.471 0.495 0.542 0.574 0.532

LSTM 0.579 0.588 0.616 0.612 0.596 0.598 0.585 0.553

RF 0.367 0.360 0.353 0.353 0.352 0.349 0.353 0.347

SVM 0.332 0.348 0.339 0.338 0.343 0.438 0.406 0.405

30 min

Transformer 0.473 0.505 0.489 0.474 0.464 0.443 0.475 0.443

ConvLSTM 0.396 0.405 0.409 0.419 0.461 0.597 0.492

LR 0.410 0.393 0.393 0.395 0.473 0.526 0.492

LSTM 0.547 0.563 0.558 0.531 0.538 0.649 0.558

RF 0.333 0.333 0.333 0.333 0.332 0.351 0.343

SVM 0.328 0.328 0.328 0.329 0.375 0.428 0.338

35 min

Transformer 0.516 0.471 0.490 0.464 0.433 0.492 0.464

LSTM performs better than the other algorithms (on average, 61.4% F1). ConvLSTM
is, on average, the second-best algorithm (on average, 54.5% F1), followed by LR (on
average, 54.0% F1), Transformers (on average, 52.9% F1), SVM (on average, 47.4% F1),
and RF (on average, 39.8% F1). Related studies on time series forecasting also show the
effectiveness of LSTM over simpler non-DL approaches [80,87,88]. Figure 9 shows that the
improvement in performance introduced by LSTM (the best DL algorithm) with respect
to LR (the best ML algorithm) is, on average, higher for smaller PWs and lower for larger
PWs. The work in [89] also observes that LSTM forecasting performances decrease for a
longer prediction horizon. This pattern can be explained by the decrease in the relevance of
past information for predicting behaviours far in the future. In addition, ref. [83] observes
that the performance improvement between different models tends to decrease as the
forecasting horizon enlarges, suggesting that more complex approaches are as effective as
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less complex ones when the historical data are far in the past. Overall, our findings show
that in the case study, LSTM can capture temporal dependencies effectively and behave
better for small PWs (i.e., the observed temporal patterns have a noticeable influence on
the predicted class). As observed in [90], LR can exploit time-independent patterns since it
does not consider any temporal dependency. This explains why the difference between
LSTM and LR performances decreases as the PW increases.
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Figure 8. The F1 score varies depending on the RW and, on average, reaches its peak for an RW of
20 min. This pattern is particularly noticeable for a PW of 0.25 h.
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Figure 9. The average improvement of LSTM with respect to LR shows that LSTM benefits more
from short PWs since it can capture relevant time-dependent patterns. Note that the values for the
two smallest PWs (0.25 and 0.5 h) are not entirely comparable with the others because they do not
consider the longest RWs, for which the prediction could not be computed.

Considering LSTM-based networks, the choice of the loss function also has an impact,
as summarized in Table 8. As the RW and PW vary, the difficulty of predicting failures
changes. In particular, predicting errors becomes harder when the PW increases, especially
when less historical information is available (i.e., for small RWs and large PWs). In such
cases, the F1 loss is ineffective, as it maximizes the F1 score for the “Failure” class. However,
a relatively high score (≈66.7%) corresponds to the trivial case in which only the “Failure”
class is predicted, and it becomes more challenging to surpass this result in the most
difficult instances of the prediction problem. Instead, the BCE loss does not privilege one of
the two classes and is more suitable for the more challenging cases, leading to better macro
F1 scores.

Focusing on the ML approaches, RF and SVM show poorer performances. SVM,
similarly to LR, is not able to capture time dependencies. However, LR is expected to
perform better than SVM, especially when the number of features exceeds the number of
samples, as SVM with a Radial Basis Function (RBF) kernel is prone to overfitting [91],
whereas LR is a simpler model. In this case, the number of features for both algorithms is
given by the number of samples in the reading windows multiplied by the number of time
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series variables. On average, there are more features than training windows (≈1.13 features
per training sample), which justifies the better performances of LR over SVM (≈1.14 times
better in terms of F1 score, on average).

Table 8. Comparison of the F1 (in white) and BCE (in gray) loss functions for LSTM. F1 loss becomes
less effective as the classification problem becomes more difficult (i.e., when the PW increases and the
RW decreases).

Prediction Window (PW)
Reading Window (RW)

0.25 h 0.5 h 1.0 h 1.5 h 2.0 h 2.5 h 3.0 h 3.5 h 4.0 h

10 min F1 F1 BCE BCE BCE BCE BCE BCE BCE

15 min F1 F1 F1 BCE BCE BCE BCE BCE BCE

20 min F1 F1 F1 F1 BCE BCE BCE BCE BCE

25 min F1 F1 F1 F1 F1 F1 BCE BCE BCE

30 min F1 F1 F1 F1 F1 F1 F1 F1

35 min F1 F1 F1 F1 F1 F1 F1

RF is the worst approach because each decision tree considers a limited number of
features selected randomly, neglecting temporal dependencies, and the number of trees
is much smaller than the number of input features (≈2% to ≈13%). For these reasons,
the random forest ensembles have weak estimators that cannot capture complex pat-
terns.Increasing the number of estimators or the maximum number of features does not
necessarily yield better results. For the combination of PW and RW leading to the best
result for RF (i.e., 0.25 h and 25 min, respectively), the best number of trees is 150, and the
best number of maximum features is 33% of all the features. Increasing the number of
trees to 200 yields a −0.01% variation in the macro F1 score, and increasing the maximum
number of features to 100% yields a −0.1% variation in the macro F1 score. On average,
across all the RW-PW combinations, the best ML algorithm has an F1 of ≈54.8%, whereas
the best DL algorithm (LSTM) has an F1 of ≈61.4%. DL algorithms are the best choice for
the specified fault prediction task in this dataset.

In summary, the best results are obtained using a PW of 0.25 h and an RW of 20 min,
which is considered suitable in the industrial setting of the case study. A moderate amount
of historical data is sufficient to predict an alert enough in advance to allow the operator
to intervene. For these RW and PW values, SVM, LR, LSTM, and ConvLSTM reach their
highest F1 scores (respectively, 0.783, 0.789, 0.861, and 0.807). However, LSTM obtains
the best F1 score, which is ≈7% better than LR and SVM, ≈5% better than ConvLSTM,
and ≈32% better than RF. The difference between LSTM and the other approaches is
justified by considering that it can consider temporal dependencies explicitly, and benefits
are especially significant when recent historical data are used for predicting. Regarding
the other DL algorithms, Transformers focus on non-sequential patterns and ConvLSTM
focuses on spatial patterns, which makes them less effective for the specified time-series
fault prediction task.

4.2. Blood Refrigerator

Table 9 shows the F1 scores of each algorithm as PW and RW vary, similarly to Table 7.
DL algorithms outperform ML algorithms in fewer cases in the blood refrigerator dataset
than in the wrapping machine dataset. Such difference can be explained by considering
the different nature of the datasets. While the wrapping machine faults are not associated
with clearly identifiable short patterns and are caused by a longer wearing of the machine
components, in the blood refrigerator, the high product temperature is often observed as
a consequence of some short, easily identifiable patterns, exemplified in Figure 4. Such
patterns can be found by simpler algorithms (i.e., ML algorithms), and more complex
architectures do not lead to significant benefits.
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Table 9. Classification results on the F1 metrics for the blood refrigerator case study, varying both
the reading and prediction window, for SVM, RF, LR, LSTM, Transformer, and ConvLSTM. A lighter
background corresponds to better results.

Prediction Window (PW)
Reading Window (RW) Algorithm

0.5 h 1.0 h 1.5 h 2.0 h
ConvLSTM 0.750 0.612 0.634 0.575

LR 0.729 0.602 0.610 0.602
LSTM 0.735 0.615 0.633 0.633

RF 0.765 0.568 0.524 0.546
SVM 0.748 0.635 0.634 0.612

10 min

Transformer 0.794 0.621 0.558 0.659
ConvLSTM 0.727 0.615 0.633 0.615

LR 0.727 0.599 0.608 0.608
LSTM 0.782 0.657 0.599 0.563

RF 0.773 0.624 0.569 0.548
SVM 0.742 0.650 0.640 0.609

15 min

Transformer 0.787 0.551 0.556 0.603
ConvLSTM 0.680 0.624 0.617 0.576

LR 0.712 0.605 0.598 0.608
LSTM 0.760 0.643 0.607 0.568

RF 0.814 0.619 0.574 0.550
SVM 0.744 0.648 0.636 0.614

20 min

Transformer 0.795 0.633 0.670 0.659
ConvLSTM 0.725 0.634 0.627 0.542

LR 0.721 0.605 0.599 0.599
LSTM 0.779 0.665 0.520 0.489

RF 0.822 0.599 0.578 0.586
SVM 0.738 0.651 0.634 0.613

25 min

Transformer 0.758 0.658 0.607 0.670
ConvLSTM 0.730 0.544 0.601 0.588

LR 0.724 0.598 0.603 0.587
LSTM 0.804 0.633 0.577 0.477

RF 0.835 0.606 0.571 0.555
SVM 0.742 0.635 0.632 0.606

30 min

Transformer 0.728 0.646 0.613 0.519

Figure 10 presents the algorithm with the best F1 score for each RW and PW pair.
The results highlight the small variation of performances across the algorithms. On average,
the best ML algorithm for each RW-PW combination has an F1 of ≈67.3%, whereas the best
DL algorithm for each RW-PW combination has an F1 of ≈67.8%.

In the case of the blood refrigerator, the absence of sessions leads to negligible dif-
ferences in the support and does not affect results significantly. In this case, the average
F1 score for different RWs varies between ≈67.4% and ≈69.8%, a small variation (≈2.4%)
compared to the one of the wrapping machine dataset (≈9%). This result also suggests
that the amount of historical data has a negligible effect on this dataset and that short RWs
already lead to high F1 scores.



Machines 2024, 12, 357 21 of 28

0.5 1.0 1.5 2.0
Prediction Window size [hours]

10

15

20

25

30

Re
ad

in
g 

W
in

do
w

 si
ze

 [m
in

]

Transformer
0.794

SVM
0.635

SVM
0.634

Transformer
0.659

Transformer
0.787

LSTM
0.657

SVM
0.640

ConvLSTM
0.615

RF
0.814

SVM
0.648

Transformer
0.670

Transformer
0.659

RF
0.822

LSTM
0.665

SVM
0.634

Transformer
0.670

RF
0.835

Transformer
0.646

SVM
0.632

SVM
0.606

0.65

0.70

0.75

0.80

F 1
 v

al
ue

Figure 10. Comparison of the best F1 scores for each combination of RW and PW sizes for the blood
refrigerator case study. The heatmap shows each combination’s best method and the corresponding
F1 score. Lighter background colours correspond to better results.

4.3. Nitrogen Generator

Table 10 compares the F1 scores of each algorithm as PW and RW vary. Also in
this case, the performances of ML and DL algorithms are similar, suggesting that as the
dataset becomes simpler, more complex algorithms become less effective and often worse
than simple ones. In particular, the best DL algorithms for each RW-PW combination
reach, on average, an F1 score of 89.1%, whereas the best ML algorithms for each RW-PW
combination reach an average of 89.0%. As in the blood refrigerators case, this result can
be explained considering the easily identifiable and similar anomalous patterns preceding
faults, as visible in Figure 5.

Figure 11 presents the algorithm with the best F1 score for each RW and PW pair.
The results highlight the similar performances of different algorithms on all the RWs and
PWs. In particular, the average F1 score of the best algorithm varies between 87.9% and
88.5% as the RW changes, a smaller difference (≈0.6%) compared to the other datasets.

In this case, RF is, on average, the best algorithm (with an F1 score of ≈87.3%). It
benefits from simple and repetitive patterns in the data that it can capture effectively. Other
algorithms have similar performances. Transformers have an average F1 of ≈86.6%, LSTM
has an average F1 of≈85.6%, SVM has an average F1 of≈85.6%, ConvLSTM has an average
F1 of ≈85.3%, and LR has an average F1 of ≈78.4%.
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Table 10. Classification results on the F1 metrics for the nitrogen generator case study, varying both
the reading and prediction window, for SVM, RF, LR, LSTM, Transformer, and ConvLSTM. A lighter
background corresponds to better results.

Prediction Window (PW)
Reading Window (RW) Algorithm

0.5 h 1.0 h 1.5 h 2.0 h 3.0 h 5.0 h
ConvLSTM 0.875 0.900 0.873 0.879 0.810 0.792

LR 0.812 0.824 0.841 0.835 0.660 0.674
LSTM 0.874 0.872 0.869 0.856 0.865 0.806

RF 0.931 0.885 0.883 0.883 0.844 0.838
SVM 0.903 0.882 0.885 0.871 0.807 0.771

10 min

Transformer 0.874 0.879 0.871 0.890 0.828 0.811
ConvLSTM 0.830 0.904 0.798 0.868 0.830 0.848

LR 0.837 0.837 0.840 0.828 0.663 0.676
LSTM 0.818 0.892 0.887 0.879 0.830 0.807

RF 0.919 0.892 0.876 0.878 0.834 0.838
SVM 0.894 0.879 0.875 0.874 0.810 0.784

15 min

Transformer 0.892 0.888 0.893 0.883 0.839 0.821
ConvLSTM 0.888 0.893 0.882 0.876 0.856 0.812

LR 0.832 0.837 0.841 0.826 0.670 0.678
LSTM 0.834 0.885 0.906 0.878 0.813 0.814

RF 0.902 0.890 0.873 0.882 0.843 0.834
SVM 0.882 0.877 0.873 0.881 0.815 0.795

20 min

Transformer 0.896 0.891 0.896 0.888 0.813 0.825
ConvLSTM 0.842 0.872 0.887 0.890 0.809 0.823

LR 0.845 0.838 0.854 0.827 0.675 0.680
LSTM 0.814 0.893 0.888 0.879 0.832 0.811

RF 0.914 0.883 0.873 0.880 0.857 0.836
SVM 0.872 0.882 0.873 0.887 0.829 0.803

25 min

Transformer 0.877 0.861 0.905 0.898 0.838 0.836
ConvLSTM 0.752 0.881 0.887 0.882 0.850 0.796

LR 0.863 0.848 0.864 0.825 0.691 0.687
LSTM 0.848 0.865 0.910 0.885 0.852 0.812

RF 0.892 0.880 0.873 0.871 0.868 0.839
SVM 0.863 0.878 0.879 0.889 0.837 0.817

30 min

Transformer 0.868 0.879 0.912 0.898 0.821 0.820
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Figure 11. Comparison of the best F1 scores for each combination of RW and PW sizes for the nitrogen
generator case study. The heatmap shows each combination’s best method and the corresponding
F1 score, where “Trans.” indicates the Transformer. Lighter background colours correspond to
better results.

4.4. Execution Time

Table 11 summarizes the training times when using a GeForce RTX 2080 Ti GPU for
DL algorithms and an Intel Core i9-9900K CPU for ML algorithms. Times are expressed in
minutes and refer to the average time for training for the best RW-PW combination with a
single set of hyperparameters. The training time is significantly higher for DL algorithms
(up to 115×), making ML algorithms a better choice than DL algorithms when their macro
F1 score is similar (i.e., in the blood refrigerator and the nitrogen generator cases).

Table 11. Comparison of the presented algorithms training times, in minutes.

Wrapping Machine Blood Refrigerator Nitrogen Generator

RF 1.40 0.65 0.04
SVM 2.10 0.72 0.15
LR 1.90 0.68 0.10

LSTM 20.00 4.00 4.80
ConvLSTM 46.00 1.50 1.93
Transformer 19.00 1.70 3.85

5. Conclusions

Failure prediction on industrial multivariate data is crucial for implementing effective
predictive maintenance strategies to reduce downtime and increase productivity and
operational time. However, achieving this goal with non-neural machine learning and deep
learning models is challenging and requires a deep understanding of the input data.

The illustrated case studies show the importance of setting meaningful prediction
and reading windows consistent with domain-specific requirements. Experimental results
demonstrate that basic, general-purpose algorithms, such as logistic regression, already
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achieve acceptable performances on complex datasets, where complexity is the mean of
spectral entropies, as defined in Section 3.2.

In the wrapping machine case study, logistic regression attains a macro F1 score of
0.789 with a prediction window of 15 min and a reading window of 20 min. In the same case
study, LR is outperformed by LSTM, a complex model that exploits temporal dependencies,
with a margin of more than 7% on average on all RW-PW pairs. In the best-case scenario of
a prediction window of 15 min and a reading window of 20 min, the LSTM model achieves
a notable macro F1 score of 0.861. However, the performance gap declines as the prediction
horizon enlarges because the relevance of the temporal dependencies between the RW and
the PW fades out. Ultimately, an LSTM model is maximally effective for short PWs when
the influence of the reading window historical data is expected to be more critical and
becomes less effective as the prediction window increases.

However, the better performances obtained with DL algorithms are negligible in
simpler datasets, where easily identifiable repetitive patterns can be found. The blood
refrigerator dataset is simpler, with a few relevant anomalous patterns leading to failures.
In that case, ML algorithms perform similarly to DL algorithms, often surpassing the latter.
A similar result is obtained for the nitrogen generator dataset. In this case, random forest,
which has the worst performance on the wrapping machine dataset, can effectively find
simple rule-based, repetitive patterns anticipating failures, achieving the best performances.

The results presented in this paper are valid for the industrial scenario and datasets
employed in the experiments. Larger datasets would likely contain more occurrences of
multiple alert codes, enabling the study of different types of anomalies.

Our future work will focus on fine-tuning the LSTM model and exploring different
architectures (e.g., CNN-based models [92] and Gaussian Processes [93]), hybrid models
that combine multiple machine learning and deep learning techniques [94], and digital
twin-based approaches that exploit simulations of physical machines. The latter have
shown good performance in diverse fields, including aeronautics [95,96], hydraulic sys-
tems [97], and facility management [98]. Such a comparison can help identify the most
effective approach for different industrial scenarios and enable a better understanding
of how different network structures and learning algorithms impact failure prediction
accuracy. Another fundamental research direction for applying LSTM as predictors is the
interpretability of their output [99]. As DL models are often used as black boxes, under-
standing the reasons behind their predictions is crucial in industrial settings where the
model’s output is used to take preventive maintenance action.
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