Indirect evaporative cooling systems have attracted much interest in recent years as they guarantee good cooling effectiveness, with lower energy demand with respect to traditional systems, thus helping to address the issue of climate change. Many studies have shown that an increase in the wettability of recuperator plates results in an improvement in the system performance. However, if the water injected into the system comes from the city water supply, it will contain calcium carbonate residuals, which will form limescale layers on the plates, thus possibly changing their wetting behavior. Therefore, the wettability of three surfaces (an aluminum uncoated surface, AL, a standard epoxy coating, STD, and a hydrophilic lacquer, HPHI) was analyzed in the presence of limescale formations, and compared with that obtained in a previous study for corresponding clean surfaces. The results showed that the HPHI contact angle was reduced in the presence of limescale (median: 50°), that for STD was slightly increased (median: 81°), and that for AL was again reduced (median: 75°). Consequently, HPHI was confirmed to be the most wettable surface in both clean and limescale conditions. Finally, an analysis was undertaken evaluating the spreading factor and the reversible work of adhesion, which were in good agreement with the qualitative visual observations of the plates covered with limescale.

Experimental Analysis of the Effect of Limescale on the Wettability of Indirect Evaporative Cooling System Plates

Caruana R.;Marocco L.;Guilizzoni M.
2024-01-01

Abstract

Indirect evaporative cooling systems have attracted much interest in recent years as they guarantee good cooling effectiveness, with lower energy demand with respect to traditional systems, thus helping to address the issue of climate change. Many studies have shown that an increase in the wettability of recuperator plates results in an improvement in the system performance. However, if the water injected into the system comes from the city water supply, it will contain calcium carbonate residuals, which will form limescale layers on the plates, thus possibly changing their wetting behavior. Therefore, the wettability of three surfaces (an aluminum uncoated surface, AL, a standard epoxy coating, STD, and a hydrophilic lacquer, HPHI) was analyzed in the presence of limescale formations, and compared with that obtained in a previous study for corresponding clean surfaces. The results showed that the HPHI contact angle was reduced in the presence of limescale (median: 50°), that for STD was slightly increased (median: 81°), and that for AL was again reduced (median: 75°). Consequently, HPHI was confirmed to be the most wettable surface in both clean and limescale conditions. Finally, an analysis was undertaken evaluating the spreading factor and the reversible work of adhesion, which were in good agreement with the qualitative visual observations of the plates covered with limescale.
2024
contact angle
indirect evaporative cooling
limescale
wettability
File in questo prodotto:
File Dimensione Formato  
fluids-09-00076-v2_rid.pdf

accesso aperto

: Publisher’s version
Dimensione 5.36 MB
Formato Adobe PDF
5.36 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1266167
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact