An accurate temporal characterization of both pump and probe pulses is essential for the correct interpretation of any pump-probe experiment. This is particularly true for attosecond spectroscopy, where the pulses are too short to be directly measured with electronic devices. However, when measuring the absolute timing between a light waveform and the related photoinduced physical phenomenon, such characterization does not suffice. Here, we introduce a new method called rACE (refined Analytical Chirp Evaluation), which retrieves both pump and probe pulses while establishing a direct relation between the reconstructed time axis and the experimental delay. This feature is particularly relevant for the extraction of absolute time delays, a growing field in attosecond spectroscopy. In this work, we prove the robustness of rACE with simulated datasets involving the effect of pulse chirp, distinctive target attributes, and non-isolated attosecond pulses, which normally constitute challenging situations for standard methods. For all the cases reported here, rACE achieves a precise absolute delay calibration with an accuracy better than the atomic unit of time. Its successful application to attosecond experimental measurements makes it a fundamental tool for attaining sub-cycle absolute temporal resolution, enabling new investigations of lightwave-driven ultrafast phenomena.

Absolute delay calibration by analytical fitting of attosecond streaking measurements

Inzani G.;Di Palo N.;Dolso G. L.;Nisoli M.;Lucchini M.
2024-01-01

Abstract

An accurate temporal characterization of both pump and probe pulses is essential for the correct interpretation of any pump-probe experiment. This is particularly true for attosecond spectroscopy, where the pulses are too short to be directly measured with electronic devices. However, when measuring the absolute timing between a light waveform and the related photoinduced physical phenomenon, such characterization does not suffice. Here, we introduce a new method called rACE (refined Analytical Chirp Evaluation), which retrieves both pump and probe pulses while establishing a direct relation between the reconstructed time axis and the experimental delay. This feature is particularly relevant for the extraction of absolute time delays, a growing field in attosecond spectroscopy. In this work, we prove the robustness of rACE with simulated datasets involving the effect of pulse chirp, distinctive target attributes, and non-isolated attosecond pulses, which normally constitute challenging situations for standard methods. For all the cases reported here, rACE achieves a precise absolute delay calibration with an accuracy better than the atomic unit of time. Its successful application to attosecond experimental measurements makes it a fundamental tool for attaining sub-cycle absolute temporal resolution, enabling new investigations of lightwave-driven ultrafast phenomena.
2024
attosecond science
light-matter interaction
strong-field physics
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1265002
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact