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Abstract
An accurate temporal characterization of both pump and probe pulses is essential for the correct
interpretation of any pump-probe experiment. This is particularly true for attosecond
spectroscopy, where the pulses are too short to be directly measured with electronic devices.
However, when measuring the absolute timing between a light waveform and the related
photoinduced physical phenomenon, such characterization does not suffice. Here, we introduce a
new method called rACE (refined Analytical Chirp Evaluation), which retrieves both pump and
probe pulses while establishing a direct relation between the reconstructed time axis and the
experimental delay. This feature is particularly relevant for the extraction of absolute time delays, a
growing field in attosecond spectroscopy. In this work, we prove the robustness of rACE with
simulated datasets involving the effect of pulse chirp, distinctive target attributes, and non-isolated
attosecond pulses, which normally constitute challenging situations for standard methods. For all
the cases reported here, rACE achieves a precise absolute delay calibration with an accuracy better
than the atomic unit of time. Its successful application to attosecond experimental measurements
makes it a fundamental tool for attaining sub-cycle absolute temporal resolution, enabling new
investigations of lightwave-driven ultrafast phenomena.

1. Introduction

In the last two decades, developments in laser science and technology fostered the flourishing of a novel field
of physics—attosecond science—devoted to the investigation of ultrafast phenomena unfolding on the few-
to sub-femtosecond (fs) time scale [1]. Various experimental techniques, either all-optical [2] or based on
the detection of photoemitted charged particles or fragments, led to discoveries about ultrafast dynamics in
atoms, molecules, and solids, triggered by the interaction with ultrashort light pulses, typically in the
infrared (IR) domain [1, 2]. Attoscience also enabled a direct detection of the electric field of light
transients [3], allowing to clock light-induced physical phenomena with absolute precision [4–6]. For
instance, this unprecedented capability highlighted the role of final-state effects [7] and the related formation
of Bloch wave packets [8] during photoemission from solids, and it enabled the unveiling of the intertwined
atomic- and bulk-like nature of core excitons [9]. In all these cases, comparing absolute time delays with
theory represented the key to unequivocally address the physics at play. While in most of pump-probe
experiments, a precise temporal characterization of the employed pulses is sufficient for their correct
interpretation, when measuring absolute delays it might not be enough. A novel approach to precisely
calibrate the experimental delay axis is thus required.

Since the attosecond (as) radiation is typically in the extreme-ultraviolet (XUV) spectral range, pulse
characterization is usually achieved through an XUV-IR two-color photoemission experiment. Depending
on the temporal structure of the XUV radiation, this measurement is either called Reconstruction of
Attosecond Beating By Interference of Two-photon Transitions (RABBITT) or attosecond streaking [1].
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Several approaches were devised to extract the pump and probe temporal profiles from such
experiments [10]. In principle, even though in these measurements the origin of the retrieved pump and
probe time axes is arbitrary, these quantities should be related. However, most of the reconstruction methods
arbitrarily shift one with respect to the other. Although not preventing a proper pulse retrieval, this
completely thwarts the determination of absolute time delays.

For photoemission experiments, a possible workaround consists of exploiting a well-characterized target
as a reference signal [5, 7]. This reference feature clocks any other phenomenon and, if properly calibrated,
allows extracting absolute delays between different processes. A similar approach was devised for all-optical
techniques: performing a separated streaking experiment simultaneously with the main measurement, an
absolute calibration of the delay axis is possible [6, 9, 11]. However, once a suitable origin of the
reconstruction time axis is chosen, this requires to directly relate the pump waveform time axis with the
measurement delay axis. Stating such a relationship is not trivial. So far, the most used approach consisted in
analyzing the center of mass (CoM) of the streaking trace [11]. In first approximation, this quantity is
proportional to the pump vector potential with changed sign [3], but a systematic investigation of the
accuracy of this approach is still missing.

Here we show the CoM analysis to be not always correct and introduce rACE (refined Analytical Chirp
Evaluation), a new nonlinear fitting routine for streaking spectrograms. Unlike conventional techniques, this
approach simultaneously retrieves the XUV intensity profile and IR vector potential while accurately aligning
them with the experimental delay axis. Through extensive simulations and reconstructions, we prove its
effectiveness and precision, addressing the limitations of existing methodologies. On simulated
measurements, rACE achieves an accuracy better than the atomic unit of time (24 as) for the calibration of
the absolute delay axis, outperforming conventional methods. We also applied it to two challenging
experimental traces, where common approaches fail. Accessing absolute timings in pump-probe experiments
is fundamental for exploiting the extreme temporal resolution of attosecond science, and enables the
investigation of lightwave-driven phenomena [12] and the ultrafast interplay of charge, spin, and lattice
degree of freedom [13] from which many exotic properties of matter originate.

2. Limits of the existing approaches

The collection of photoelectron spectra obtained by ionizing a gas target with XUV photons while scanning
the relative delay with an intense, few-fs IR pulse, is called spectrogram. Within the strong-field
approximation (SFA) [14], it can be described by the following relation (hereafter atomic units are adopted,
unless otherwise specified) [15]:

S(p, τ) =

∣∣∣∣ˆ +∞

−∞
dtEX (t− τ) d [p+AIR (t)] e

−i
´+∞
t dt ′ 1

2 [p+AIR(t ′)]
2

eiIpt
∣∣∣∣2 (1)

where EX(t) and AIR(t) are, respectively, the XUV electric field and the IR vector potential, p is the
photoelectron momentum, τ the XUV-IR delay, d(p) the transition dipole moment from the atomic ground
state to a free electron state and Ip the ionization potential of the gas target. Away from atomic resonances, if
the atomic dipole moment is almost constant in the energy range of interest, the above equation reveals that
the IR pulse acts as a phase modulator, streaking the photoelectron spectrum in energy [16]. Since
equation (1) depends on both the XUV and IR pulses, reconstruction methods to access their temporal
profiles from a spectrogram can be envisioned. However, traditional acquisition systems only measure the
intensity of the photoelectron wavepacket, losing their phase. Thus, several iterative approaches were
developed to retrieve the phase information and fully characterize the XUV intensity profile as well as the IR
field.

2.1. FROGCRAB
The most known reconstruction technique is called Frequency-Resolved Optical Gating for Complete
Reconstruction of Attosecond Bursts (FROG CRAB) [17]. In brief, it recasts equation (1) in a form suitable
for iterative algorithms commonly employed to characterize ultrashort pulses by the Frequency-Resolved
Optical Gating (FROG) approach [18]. If both IR and XUV pulses are linearly polarized and the dipole is
constant in energy, the spectra of the photoelectrons emitted along the polarization direction can be
written as:

S(p, τ) =

∣∣∣∣ˆ +∞

−∞
dtEX (t− τ) d [p] eiϕ(t) e

i
(

p2

2 +Ip
)
t
∣∣∣∣2 (2)
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where p is the final electron momentum in the continuum and ϕ(t) is the Volkov phase:

ϕ(t)≃−
ˆ +∞

t
dt ′
[
pcAIR (t

′)+
A2
IR (t

′)

2

]
(3)

which accounts for the phase accumulated by the wavepacket in the continuum while interacting with the IR
field. In equation (3), we replaced the final electron momentum, p, with the central momentum, pc, of the
photoelectron wavepacket, performing the so-called central momentum approximation (CMA). This
approximation is crucial for the FROG CRAB approach, but can be removed with more refined
techniques [19]. By defining a gate, G(t), and time-shifted pulse, P(t− τ), function as:

G(t) = eiϕ(t), P(t− τ) = EX (t− τ) d [p] , (4)

we can rewrite equation (2) as the squared modulus of the Fourier transform of their product:

S(p, τ) =

∣∣∣∣ˆ +∞

−∞
dtG(t) P(t− τ) eiωt

∣∣∣∣2 (5)

where ω = p2/2+ Ip is the angular frequency. This expression is in the form of a generic blind FROG
spectrogram, which can be reconstructed with multiple iterative algorithms (e.g. PCGPA, LSGPA, ePIE,
STRIPE) that have been devised on this analogy [20–25].

Over time, these methods became standard tools for characterizing attosecond pulses [10], at least when
the XUV bandwidth is not exceedingly broad [26] and when experimental non-idealities can be
neglected [27, 28]. Nonetheless, they suffer from a major drawback: the absence of a direct link between the
retrieved probe and gate pulse temporal axes and the experimental delay one. This limitation thwarts the
achievement of the absolute delay calibration necessary for attosecond-resolved experiments.

Mathematically, equation (5) can be interpreted as the squared modulus of the Fourier transform
(indicated as F{·}) of the product between the gate and time-shifted pulse functions:

S(p, τ) = |F {G(t) P(t− τ)}|2 . (6)

By exploiting the time-shifting property of the Fourier transform:

F {x(t−T)}= e−iωTF {x(t)} (7)

it is trivial to show that an arbitrary shift along the time axis of both the pulse and gate functions will
produce the same spectrogram:

|F {G(t−T) P(t−T− τ)}|2 = |F {G(t) P(t− τ)}|2 , (8)

inhibiting the direct alignment of the retrieved pulses to the experimental delay axis.
In any pump-probe experiments, therefore, only the relative time delay between the pump and probe

pulses, τ , is relevant. A proper reconstruction technique should not only provide the correct temporal profile
of the pump and probe pulses, but also their exact relative delay. For example, if a spectrogram is simulated
with both XUV and IR pulses centered at t= 0 (as in figure 1), a precise reconstruction should give two
pulses whose envelopes peak at the same time instant T. Whatever its value is, T can be taken as the new zero
of the time axis, allowing a direct comparison between the outcome of a pump-probe measurement and the
electric field of the pump radiation characterized by an attosecond streaking experiment. However, most of
the commonly available methods retrieve a gate pulse, G(t+∆τ), with an additional, arbitrary time shift
with respect to P(t). In the following, we characterize this residual time shift,∆τ , which prevents a proper
alignment of the gate and probe pulses.

To demonstrate the limitations of FROG CRAB-based approaches, we employed equation (1) to simulate
an attosecond streaking measurement (figure 1(a)). The input IR field (figure 1(f)) was obtained by a
second-harmonic (SH) FROG measurement of pulses emitted by a Ti:Sapphire laser and broadened by an
hollow-core capillary compressor, while the spectrum of the XUV radiation (inset in figure 1(e)) generated
by high-order harmonic generation (HHG) in argon was measured with an XUV spectrometer [29]. We
assumed a group-delay dispersion (GDD) of D2,X = 0.01 fs2 for the XUV radiation.

Figure 1(b) shows one streaking trace reconstructed by exploiting the FROG CRAB approach in tandem
with the extended Ptychographic Iterative Engine (ePIE) [22]. Although the reconstructed spectrogram
nicely reproduces the simulation, the retrieved XUV intensity profile (green shaded areas in figure 1(e)) does
not match the simulated one (figure 1(e), black solid curve). Starting from ten random initial conditions, the
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Figure 1. (a) Simulated attosecond streaking trace obtained from experimentally measured IR and XUV pulses, and
reconstructions performed with the (b) ePIE, (c) VTGPA, and (d) rACE algorithms. (e) Simulated (black solid curve) and
reconstructed with ePIE (green diamonds), VTGPA (yellow triangles), and rACE (red circles) XUV intensity profile. For ePIE and
VTGPA, the outcome of ten independent reconstructions (shown in top panels as green and yellow shaded areas, respectively) was
shifted such that the XUV profile peaks at t= 0. The inset shows the experimental spectrum of the XUV pulse as a function of the
photon energy, hν. (f) Simulated (black solid curve) and reconstructed with ePIE (green diamonds), VTGPA (yellow triangles),
CoM (blue squares), and rACE (red circles) IR vector potential. For both ePIE and VTGPA, we applied the same shift already
obtained for the XUV radiation. The inset shows the residual time shift,∆τ , (see appendix A) of the reconstructed IR vector
potential for the ePIE (green diamond), VTGPA (yellow triangle), CoM (blue square), and rACE (red circle) methods. Error bars
extend over twice the standard deviation. For ePIE, VTGPA, and rACE, ten reconstructions with distinct initial conditions were
performed.

reconstructed XUV intensity is always shifted by a different quantity along the time axis (top panel in
figure 1(e)). Assuming as a reference the peak value of the reconstructed XUV intensity profile, we can try to
compensate for this shift (figure 1(e), green diamonds). However, if we compare the simulated (black solid
curve) and ePIE reconstructed (green diamonds) IR vector potential in figure 1(f), we obtain that the
reconstruction has a residual time shift,∆τ , of 320± 280 as (see appendix A for details on its calculation).
FROG CRAB-based approaches, therefore, do not allow to temporally relate the reconstructed IR and XUV
pulses with the experimentally measured delay axis.

2.2. Volkov transform generalized projection algorithm
An alternative technique, which does not rely on the FROG CRAB formalism, is the Volkov transform
generalized projection algorithm (VTGPA) [19]. Starting from a scalar version of the SFA equation (1), this
method transforms integrals into discrete summations, evaluating the spectrogram over a discrete set of
delay and photoelectron energy pairs and performing an error minimization routine. From a mathematical
standpoint, this converts the Fourier transform of the FROG CRAB formalism into a discrete transform
where the basis is represented by Volkov waves [19]. Moreover, this method does not rely on the CMA.

Figure 1(c) displays the outcome of a VTGPA reconstruction of the simulated streaking trace
(figure 1(a)). As for ePIE, despite the good agreement between simulation and reconstructed spectrograms,
the retrieved XUV intensity profile from ten independent reconstructions with different initial conditions
(yellow shaded areas in figure 1(e)) does not match the simulation input. Also in this case, we can
compensate this time shift by assuming the peak value of the XUV intensity as a reference. The obtained
profile matches the simulated one (yellow triangles in figure 1(e)). However, if we apply the same time shift
to the retrieved IR vector potential in figure 1(f), we obtain a residual delay,∆τ , of 532± 25 as with respect
to the simulation. Therefore, also VTGPA does not generally allow an accurate reconstruction of the relative
timing between the retrieved XUV and IR pulses.

2.3. Center-of-mass method
In an attosecond streaking measurement, the change in central kinetic energy,∆K, of the photoelectron
wavepacket is proportional to the IR vector potential at the time instant of ionization, τ , with changed
sign [3]:

∆K(τ)∝−AIR (τ) . (9)
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Therefore, by computing the delay-dependent CoM of the spectrogram, S(K, τ), as a function of the kinetic
energy, K, we can extract the temporal profile of the IR vector potential:

AIR (τ)≃−
´ +∞
0 dKK · S(K, τ)´ +∞
0 dKS(K, τ)

(10)

linking the time and delay axes. This method has been already applied for interpreting attosecond
experiments [11, 30–32], and can be further refined by considering an amplitude factor and a
target-dependent time shift [33].

Blue squares in figure 1(f) mark the IR vector potential retrieved with the CoMmethod for the streaking
trace represented in figure 1(a). For the considered case, this approach accurately retrieves the IR vector
potential with a negligible temporal shift (inset in figure 1(f)) of 12± 4 as. However, in section 4 we will
show that it fails when applied in more realistic conditions, especially when satellite XUV pulses are present.
Therefore, an innovative reconstruction method is imperative to bridge the gap between reconstruction and
experimental delay axis for attosecond temporal resolution; this method is rACE.

3. Model and algorithm

Starting from equation (2), if the XUV pulse is much shorter than the IR one, the time-dependent Volkov
phase can be approximated as constant and equal to its value at the instant of ionization. We can then assume
a Gaussian temporal profile for the photoelectron wavepacket, χs(t, τ), generated by the XUV radiation and
dressed by the IR pulse, which can be written as [34]:

χs (t, τ) = Ax e
− 1

2 (
t

σx )
2

ei[Ks(τ) t+ 1
2βs(τ) t

2] (11)

where Ax and σx are the amplitude and duration of the XUV pulse. The dressing IR pulse changes the central
energy, Ks, and chirp rate, βs, of the ‘streaked’ photoelectron wavepacket [34]:

Ks (τ) = Kc − pcAIR (τ)+
1

2
A2
IR (τ) , βs (τ) = βx + pcEIR (τ) (12)

where Kc = p2c/2 and pc are, respectively, the central energy and momentum of the wavepacket, βx is the
chirp rate of the XUV pulse and EIR =−∂AIR/(∂t) is the IR electric field. Gagnon and Yakovlev [34]
exploited equation (12) to analytically express the bandwidth of the streaked photoelectron wavepacket. This
quantity was used for directly extracting the attosecond chirp of the XUV radiation from spectrograms, and
the proposed method dubbed Analytical Chirp Evaluation (ACE). In this technique, the IR vector potential
was evaluated as the first moments of the streaked photoelectron spectra, i.e. the center of mass of the
streaking trace, and the absolute delay calibration was not discussed. Here, we go significantly beyond this
approach, obtaining a versatile analytical expression for streaking measurements which allows to access
absolute timings in pump-probe experiments.

The spectrogram, in fact, is the squared modulus of the Fourier transform of the time-dependent
streaked photoelectron wavepacket of equation (11):

S(p, τ) = |F {χs (t, τ)}|2 = |χ̃s (p, τ)|2 (13)

which can be analytically computed as:

χ̃s (p, τ) =
Axσx√

1− iβs (τ) σ2
x

e
− [p2/2−Ks(τ)]

2
σ2
x

2[1−iβs(τ)σ2
x ] . (14)

Assuming an analytical expression for the IR field of the form:

AIR (t) = A0 E (t) cos
[
ωIR (t− t0)+

1

2
βr (t− t0)

2
+ϕCEO

]
(15)

where t0 is an arbitrary time shift, A0 the amplitude term, ωIR the angular frequency of the IR radiation, βr

the associated chirp rate, ϕCEO the IR carrier-envelope offset, and E(t) the Gaussian envelope:

E (t) = e
− (t−t0)

2

2σ2
IR , (16)
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we obtain analytical expressions for Ks and βs in equation (12), which inserted in equation (14) give an
analytical function describing the experimental spectrogram. We implemented this expression in a nonlinear
least-squares curve fitting tool (a Matlab built-in function), which allows retrieving parameters for the XUV
and IR pulses by minimizing the distance between the input and reconstructed spectrograms.

A crucial point is that, in equation (11), the Gaussian XUV envelope peaks at t= 0. Moreover,
analytically computing the Fourier transform in equation (14) is equivalent to setting T= 0 in equation (8)
for FROG CRAB methods; this is not the case for ePIE and VTGPA, as each reconstruction is shifted by a
different arbitrary time value (figure 1(e)). These characteristics are essential for achieving the desired
absolute delay calibration and relate the reconstruction time axes to each other and with the experimental
delay one, once a suitable reference time zero (in our case, that corresponding to the peak intensity of the
XUV profile) is chosen.

Figure 1(d) shows the rACE reconstruction of the streaking trace represented in figure 1(a). Despite the
analytical expressions for both the XUV and IR pulses only allow reconstructing Gaussian pulses, in
figures 1(e)–(f) deviations from the simulated XUV and IR profiles—which, being experimentally measured,
are not perfect Gaussians—are negligible. We stress that the rACE approach can be generalized, at a similar
computational cost, for any analytical definition of the IR and XUV profiles such that (i) both AIR, its
derivative, its integral, and the integral of A2

IR are analytical expressions, and (ii) the Fourier transform of the
temporal profile of the photoelectron wavepacket is an analytical expression. Any functional form which
satisfies these requirements and well approximates the IR and XUV pulses is suitable for rACE. A more
flexible parametrization of the IR pulse, for instance as the one implemented in VTGPA [19], could further
generalize the rACE approach allowing an arbitrary IR envelope. However, it would require additional
computational resources, without substantially improving the retrieval of the absolute delay (see section 4.4).

In this specific case, rACE accurately retrieves the timing of the IR vector potential within 20± 7 as (inset
of figure 1(f)). It outperforms FROG CRAB-based methods by an order of magnitude and obtains a result
comparable with the CoMmethod, thus allowing for a precise absolute calibration of the delay axis. Since,
even in this simple case, ePIE and VTGPA perform worse than the CoM approach, from hereon we will only
use the latter as a benchmark.

4. Robustness on the experimental parameters

A crucial characteristic of pulse reconstruction methods is their robustness on experimental parameters.
Besides the known shortcomings of attosecond streaking measurements [27] and SFA-based
descriptions [28, 33, 35], the accuracy of simplified approaches can be further hindered by their
approximations. In this section, we delve into more complex scenarios to highlight potential limitations,
showing that rACE surpasses the CoM approach and allows a precise absolute calibration with attosecond
temporal resolution. In all simulations here reported, we assumed the interaction of a radially uniform
two-color laser field with a single atomic target, neglecting any ensemble or volume effects. Previous works
demonstrated that volume effects can alter the retrieved IR intensity and XUV pulse duration in extreme
experimental conditions, without hindering access to spectroscopic information as the photoionization time
delays [28, 35]. Unless otherwise specified, the IR pulses have a transform-limited Gaussian intensity profile
with full-width at half-maximum (FWHM) duration of 5 fs, central wavelength of 800 nm, and peak
intensity of 2× 1012Wcm−2 in vacuum, while the XUV pulses have a transform-limited Gaussian intensity
profile with FWHM duration of 250 as, central photon energy of 25 h̄ωIR ≃ 38.75 eV and peak field
amplitude of 1× 109 V cm−1. We always assumed neon as a gas target (Ip ≃ 21.56 eV).

4.1. Chirp of the IR and XUV pulses
Exploring the impact of the chirp of the IR and XUV radiation on the timing of the reconstructed vector
potential, we performed simulations based on equation (1) varying the GDD, D2. For the IR radiation, the
GDD was changed between−9 and 9 fs2 in figures 2(a)–(c), while for the XUV pulses in figures 2(d)–(f), it
ranged from−0.03 to 0.03 fs2. For the IR chirp, both rACE and the CoM procedure produce extremely
accurate results (figure 2(a)). Instead, considering the XUV chirp, the CoM approach displays shifts in the
retrieved IR vector potential up to 26 as, while rACE consistently yielded phase delays below 3 as
(figure 2(d)). Furthermore, rACE accurately characterizes the FWHM duration (figures 2(b), (e)) and GDD
(figures 2(c), (f)) of both pulses, while the properties of the XUV pulse are unaccessible by the CoMmethod.

4.2. Photoionization cross-section and phase
A common assumption of pulse retrieval algorithms is the wavepacket approximation [36–38]. From
equation (1), the dependence of the dipole moment of the XUV-induced transitions on the IR vector

6
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Figure 2. (a) Residual time shift,∆τ , (b) FWHM duration, and (c) GDD of the IR vector potential retrieved with the CoM
procedure (blue squares) and with rACE (red circles) when the GDD of the IR pulse ranges from−9 to 9 fs2. Dashed curves mark
values expected from simulations. (d)–(f) Same as in panels (a)–(c), but when the GDD of the XUV pulse ranges from−0.03 to
0.03 fs2. Panels (e) and (f) show the FWHM duration and the GDD of the XUV pulse. Error bars extend over twice the standard
deviation. For rACE, ten reconstructions with distinct initial conditions were performed for each simulation.

potential is typically neglected (d[p+AIR(t)]≃ d[p]) and its product with the Fourier transform of the XUV
electric field, ẼX, gives the photoelectron wavepacket:

χ̃(p) = ẼX (p) d [p] . (17)

In most of the pulse retrieval algorithms, the reconstructed quantity is not the XUV electric field, but its
product with the transition dipole moment, i.e. the photoelectron wavepacket. A customary choice is then to
assume d(p) constant and thus χ̃≃ ẼX. This assumption is experimentally justified by carefully choosing the
gas target to avoid any significant distortion of the photoelectron wavepacket [36], but the spectral filter
operated by d(p) can lead to systematic errors in the delay axis calibration.

Under the assumptions of equation (2), we can write the dipole moment in the frequency domain as the
product of its modulus, also called atomic cross-section, σat(p), and a phase term, η(p), called atomic phase:

d(p) = |d(p)| eiη(p) = σat (p) e
iη(p). (18)

For noble gases, the experimental values for the atomic cross-section [39] and calculated atomic phases [40]
can be found in the literature (see figure 3(c) for the case of Ne and Ar). Therefore, we can exploit them to
account for the atomic dipole of the gas target in the rACE algorithm.

Figure 3(a) shows the residual time shift,∆τ , of the reconstructed IR vector potential for the CoM
procedure (blue square) and for rACE neglecting (orange triangle) or including (red circle) the atomic
cross-section. Since far from resonances its only effect is a minor distortion of the spectral intensity of the
wavepacket, all methods produce very accurate results.

For the atomic phase, instead, we can expand it in a Taylor series around the central momentum, pc, of
the wavepacket. The constant term will give a phase offset which vanishes in the squared modulus of
equation (13). From the definition of group delay:

τat (Ec) =
∂η

∂E

∣∣∣∣
E=Ec

=
∂η

∂K

∣∣∣∣
K=Kc

=
1

pc

∂η

∂p

∣∣∣∣
p=pc

(19)

where E= K+ Ip is the photon energy and Ec its central value. Therefore, the first-order derivative of the
atomic phase gives a linear phase term that will introduce an additional delay, τat, to be summed to the
experimental pump-probe delay, τ . The atomic group delay, represented in figure 3(d), can amount up to
100 as. Neglecting it, both in the rACE and CoM procedures, gives a systematic shift of the retrieved IR vector
potential of a few tens attoseconds (−33 as in figure 3(b)), while summing it to the experimental delay allows
rACE to produce accurate results.

In the Taylor expansion, higher-order terms will give an additional energy-dependent phase to the
photoelectron wavepacket. As an example, we can compute the additional GDD associated with the atomic
phase, represented in figure 3(e), as:

7
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Figure 3. (a) Residual time shift,∆τ , of the reconstructed IR vector potential for the CoM procedure (blue squares) and the rACE
algorithm neglecting (orange triangles) or including (red circles) the atomic cross-section and (b) atomic group delay. Error bars
extend over twice the standard deviation. For rACE, ten reconstructions with distinct initial conditions were performed for each
simulation. (c) Atomic cross-section (1Mb= 10−18 cm2), (d) atomic group delay, and (e) atomic GDD for neon (black dotted
curves) and argon (black dashed curves) as taken from the literature [39, 40].

D2,at (Ec) =
∂τat
∂E

∣∣∣∣
E=Ec

=
1

p2c

∂2η

∂p2

∣∣∣∣
p=pc

. (20)

Both for Ne and Ar, the atomic GDD is very small, about one order of magnitude smaller than what
considered in figures 2(d)–(f). Thus, its impact on the retrieved IR vector potential is expected to be
negligible, supporting our choice of neglecting any atomic phase term apart from the atomic group delay.

Before concluding, we remark that we do not suggest the CoM or rACE approaches to extract
energy-dependent photoemission time delays from attosecond streaking spectrograms. First, they may be
more sensitive to the actual IR and XUV pulse envelopes than the calibration of the absolute delay discussed
in this manuscript. Second, since the meaningful photoemission time delay information is usually extracted
by performing a phase-delay difference, any errors in determining the time zero introduced by blind FROG
approaches (see section 2.1) will cancel out and not affect the results. rACE, instead, is preferred when a
streaking spectrogram, performed in a known calibration target, is used to extract the pump temporal profile,
to be compared with the fast oscillating part of a simultaneous pump-probe experiment [6, 9, 11, 41–43].

4.3. Satellite XUV pulses
In realistic experimental conditions, generating a perfectly isolated single attosecond pulse can be
challenging. Noise and instabilities in the driving laser are strongly enhanced in the HHG process, leading to
the emission of satellite pulses. Depending on the adopted gating scheme, pre- and post-pulses can be
separated from the main XUV burst by a half-cycle [44, 45] or a full optical cycle [46] of the driving radiation.
Satellite pulses generate additional photoelectron wavepackets which interfere with the main one, producing
spectral modulations and interference patterns [47]. By reshaping the spectral amplitude, the interference
pattern can cause the CoM to deviate from the IR vector potential, hindering a proper extraction.

We extended the rACE approach to include a satellite pulse by considering a replica of the main
photoelectron wavepacket described in equation (11), but scaled in amplitude by a factor ρr and shifted in
time by δt :

χ(t, τ) = χs (t, τ)+ ρrχs (t− δt, τ − δt) e
−iωIRδt . (21)

The additional phase term for the replica accounts for the acceleration of the satellite wavepacket in the
opposite (for δt =±π/ωIR) or same (for δt =±2π/ωIR) direction with respect to the main one depending
on their temporal distance. Fourier transforming equation (21), we obtain the expression for the
spectrogram to be used in the fit. This requires calculating of the Volkov phase of the two wavepackets
(appendix B); further details on the derivation are reported in appendix C.

Figures 4(a) and (e) show two spectrograms simulated with equation (1) by considering a satellite XUV
pulse, 70% in intensity compared to the main one, respectively separated by a half-cycle and a full cycle of the
driving radiation. The traces are significantly more structured than those obtained from an isolated single
attosecond pulse (figure 1(a)). Despite the increased complexity, rACE accurately retrieves both the XUV
intensity profile (figures 4(b), (f)) and the IR vector potential (figures 4(c), (g)). The CoM analysis, in turn,
fails in reconstructing the IR vector potential.

Simulations were performed while changing the amplitude of the pulse replicas between 0 and 90% of
the main peak intensity, both when the satellite pulse comes before (δt < 0) or after (δt > 0) the main one.
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Figure 4. (a) Simulated attosecond streaking measurement for a main XUV pulse with a 70%-intensity satellite separated by a
half-cycle of the driving radiation. (b) Simulated (black solid curve) and rACE reconstructed (red circles) XUV intensity profile
and (c) IR vector potential, together with the result of the CoM analysis (blue squares). (d) Residual time shift of the IR vector
potential retrieved by rACE (red circles) and the CoM analysis (blue squares) for different amplitudes and time separation of the
pulse satellite compared to the main one. Error bars extend over twice the standard deviation. For rACE, ten reconstructions with
distinct initial conditions were performed for each simulation. (e)–(h) Same as in (a)–(d), but for a pulse satellite separated by a
full cycle of the driving radiation. In all simulations, both XUV pulses have a transform-limited Gaussian intensity profile with
FWHM duration of 250 as and central photon energy of 25 h̄ωIR ≃ 38.75 eV. The peak field amplitude of the main pulse is
1× 109 V cm−1.

For a half-cycle separation (figure 4(d)), the absolute residual time shift is up to 499± 8 as. Considering
instead a full-cycle separation (figure 4(h)), at most it amounts to 31± 6 as. In both cases, rACE has a
residual time shift smaller than 1 as. It is worth noticing that this effect is clearly stronger when the pulse
replica is separated by a half-cycle of the IR radiation: the photoelectron wavepackets generated by the two
replicas are accelerated in opposite directions, strongly distorting the IR vector potential retrieved by the
CoM. For a full-cycle separation, instead, both wavepackets are accelerated in the same direction; this mainly
distorts the IR envelope retrieved by the CoM, with a smaller effect on the phase of the carrier. Notably, the
half-cycle separation, where the CoM analysis shows larger residual time shifts, is the standard condition for
most of the experimental implementations. The rACE approach, in turn, outperforms it, proving accurate
irrespectively of the satellite pulse amplitude.

It is worth noticing that a correct mathematical description of the XUV intensity profile is crucial. While
a non-Gaussian spectral shape has a minor influence on the accuracy of the absolute delay calibration (see
figure 1 and section 4.4), underestimating the number of XUV pulses (e.g. considering only one XUV pulse
when a satellite is present) hinders convergence. Although it is not possible to extract reliable information
from non-converged results, we expect the residual time shift to be comparable to the CoM one, as this
approach implicitly describes a streaking measurement as a single Dirac-like XUV pulse sampling the IR
waveform.

As underestimating the number of satellite pulses hinders convergence, two practical strategies to set up
the analytical model for rACE are possible. First, a visual inspection of the periodic energy modulation of the
photoelectron spectra already hints at the presence of satellite pulses and their time distance from the main
one. This allows assuming a reasonable multi-Gaussian model with a large enough number of free
parameters. Alternatively, it is possible to reconstruct the attosecond streaking trace with another
method [19–25] and use the retrieved XUV profile to determine the number of pulses. We regard both
approaches to be equally valid.

4.4. IR and XUV envelopes
In the rACE method, we assumed a Gaussian envelope for both the XUV and IR pulses. In real experiments,
however, this could not be the case, and more complicated shapes could arise. We checked the impact of this
approximation by reconstructing attosecond streaking measurements simulated with different XUV and IR
envelope functions. To keep fixed the FWHM intensity duration of the pulses, we defined a cosine-squared
envelope as:

E (t) =

 cos2
(

π t
p

)
, for − p

2 ⩽ t⩽ p
2 and p=

π
√

ln(2)σ

arccos
(
2−

1
4

)
0, elsewhere

. (22)
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Figure 5. Simulated (black solid curve) and rACE reconstructed (red to brown circles) amplitude of the IR envelope assuming
(a) a cosine-squared, (b) a Gaussian, (c) a hyperbolic secant, and (d) a Lorentzian pulse envelope. In all cases, the intensity
FWHM duration of the pulses is set to 5 fs. (e) Residual time shift,∆τ , of the IR vector potential retrieved by rACE for different
IR envelope functions. (f)–(i) Same as in (a)–(d), but assuming different XUV pulse envelopes. In all cases, the intensity FWHM
duration of the pulses is set to 250 as. (j) Residual time shift,∆τ , of the IR vector potential retrieved by rACE for different XUV
envelope functions. In (e) and (j), error bars extend over twice the standard deviation. Ten reconstructions with distinct initial
conditions were performed for each simulation.

In the same spirit, we defined a hyperbolic secant envelope:

E (t) =

(
ln
(
1+

√
2
)

2
√
ln(2)σ

) 1
2

sech

(
2t ln

(
1+

√
2
)

2
√
ln(2)σ

)
, (23)

and a Lorentzian envelope:

E (t) =

(
4
√√

2− 1

π
√
ln(2)σ

) 1
2

1

1+
(
√
2−1)t2

ln(2)σ2

(24)

where σ is the standard deviation of the associated Gaussian envelope. We performed two sets of simulations
and reconstructions. In the first set (figures 5(a)–(e)), we simulated a single Gaussian XUV attosecond pulse
and we changed the envelope function of the IR pulse. In the second set (figures 5(f)–(j)), we simulated a
Gaussian IR pulse and changed the envelope function of the single XUV attosecond pulse. In all cases, we
assumed intensity FWHM durations of 5 fs for the IR and 250 as for the XUV.

In all panels of figure 5, colored markers show the result of the rACE reconstructions, which assume
Gaussian pulses. Considering the distinct IR envelopes (figures 5(a)–(d)), rACE converges to the Gaussian
shape that best fits the simulated function. Despite the discrepancy between the simulation and the
reconstruction being particularly evident for the Lorentzian pulse (figure 5(d)), the residual time shift of the
IR vector potential,∆τ , retrieved by rACE is in all cases below 1 as (figure 5(e)).

The same holds when different XUV pulse envelopes are considered (figures 5(f)–(i)). In this case, the
rACE approach fits the XUV spectral intensity with a Gaussian profile. This approximation is particularly
good for cosine squared and hyperbolic secant envelopes (figures 5(f), (h)), but it leads to large errors for
Lorentzian pulses (figure 5(i)). From figure 5(j), the residual time shift,∆τ , is below 1 as only for the cosine
squared, Gaussian and hyperbolic secant profiles, while Lorentzian pulses leads to a larger shift (6± 18 as).

While the above examples underline the robustness of rACE with pulses characterized by an even
temporal envelope, they do not address its applicability to strongly distorted pulses. Although rACE can
correctly treat asymmetric IR profiles (see the example in figure 1), the current version may not properly
approximate uneven XUV pulses, as their spectral phase is limited to a quadratic term. Nevertheless, since
second-order dispersion usually dominates attosecond pulse generation, this discussion covers the majority
of realistic experimental scenarios. Therefore, we proved rACE to be reliable for any symmetric XUV and IR
envelope functions considered, although strongly distorted or significantly asymmetric XUV spectra can
decrease its precision or, in extreme conditions, hinder convergence.

10



J. Phys. Photonics 6 (2024) 025007 G Inzani et al

Figure 6. (a) Experimental and (b) rACE reconstructed attosecond streaking measurement obtained with the ionization gating
technique [45]. (c) Reconstructed XUV intensity profile and (d) IR vector potential. The shaded area in panel (d) extends over
twice the standard deviation computed over ten reconstructions with different initial conditions. (e)–(h) Same as in (a)–(d), but
with a stronger XUV satellite pulse.

5. Reconstruction of experimental measurements

In previous sections, we demonstrated the efficacy of the rACE method in characterizing IR and XUV
radiation across diverse scenarios, always obtaining an absolute calibration of the delay axis with a precision
below the atomic unit of time. In particular, while for ideal, ‘well-behaved’ spectrograms both rACE and the
CoMmethod give consistent results, only the former is accurate in more realistic and challenging conditions.
To finally test its usefulness, we apply it to real measurements. The experimental setup used to obtain them is
described elsewhere [29].

Figures 6(a) and (b) show the experimental and reconstructed attosecond streaking trace obtained from a
neon jet using the ionization gating technique [45]. An intense IR pulse is tightly focused onto the gas target
to achieve a peak intensity exceeding the saturation one. This leads to a complete ionization of the noble gas
atoms on the rising edge of the driving pulse, confining the emission of the XUV radiation in just one
half-cycle, leading to the generation of a single attosecond pulse. The reconstructed XUV intensity profile
(figure 6(c)) is consistent with this picture: it shows an almost isolated single attosecond pulse, with a small
pulse replica at a half-cycle of the driving IR radiation, coming from an incomplete ionization of the medium,
which modulates the photoelectron spectrum. The reconstructed IR pulse (figure 6(d)), which is a fraction of
the radiation driving the HHG process, has a duration compatible with that required by the ionization gating
technique [45]. We also accounted for the additional∼30-as atomic group delay associated with the atomic
phase of the Ne gas target in the reconstruction. At variance with the CoM analysis, the rACE technique is
capable of dealing with all these non-idealities, which could potentially hinder a precise delay calibration.

For longer IR pulses (figure 6(h)), the gas target is only partially ionized within the first half-cycle of the
driving radiation, and a satellite XUV pulse is emitted at a half-cycle separation (figure 6(g)). As the
photoelectrons generated by the main and satellite XUV pulses experience an IR field with opposite sign, the
spectrogram is characterized by an interference pattern (figure 6(e)) which strongly depends on the pulse
parameters. However, fluctuations, ensemble effects and noise smear it [28, 47], increasing the complexity of
the reconstruction (figure 6(f)). To improve accuracy, constraints on the fit parameters, in particular on the
satellite amplitude, are fundamental.

Therefore, also on experimental traces, rACE proves to be a versatile tool, which enables an absolute delay
calibration in diverse and challenging experimental conditions.

6. Conclusions

In conclusion, we have demonstrated that FROG CRAB-based methods do not allow relating the time axis of
the reconstructed XUV and IR pulses with the experimental delay axis of the measured spectrogram. To
overcome this limitation, we propose a refined version of the Analytical Chirp Evaluation method, called
rACE, to fit attosecond streaking measurements analytically. The derivation of a flexible expression for
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spectrograms and its implementation in a nonlinear fitting routine allows retrieving both the XUV intensity
profile and the IR vector potential, while keeping a precise relationship between the time and delay axes. This
novel possibility enables clocking pump-induced features in any other simultaneous experiment, as they can
be directly compared with the vector potential that is inducing them. We tested rACE by reconstructing
simulated spectrograms in several challenging conditions, studying its precision against the chirp of the XUV
and IR pulses, the target-dependent photoionization cross-section and phase, and the presence of satellite
XUV pulses. Comparing the simulated vector potential with the rACE reconstruction, we obtained
significantly better results than by extracting it from the CoM of the spectrogram. In all tested conditions,
rACE showed superior performances, accurately characterizing the IR waveform with respect to the delay
axis with a precision below the time atomic unit. These results are relevant for any simultaneous differential
delay experiment in two separate systems, possibly even exploiting distinct (e.g. all-optical) attosecond
techniques. The successful application to challenging experimental traces makes it a valuable tool to achieve
attosecond temporal resolution in spectroscopic measurements of absolute timings.
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Appendix A. Residual time shift of the reconstructed IR vector potential

To quantify the time shift between the simulated, ASim(t), and reconstructed, ARec(t), IR vector potential,
regardless of the reconstruction method, we computed the phase delay between the two quantities [9]. Since
any shift of the reconstructed vector potential along the time axis with respect to the simulated one will result
in an additional phase term in the frequency domain, we can define ÃSim(ω) and ÃRec(ω), respectively, the
associated Fourier-transformed quantities. Then, we compute the product of the latter by the complex
conjugate of the former:

P̃(ω) = ÃRec (ω) · Ã∗
Sim (ω) (A.1)

where ∗ represents the complex conjugate. The squared modulus of the product will peak at the central IR
frequency, ωIR, while its phase will give the phase difference between the simulated and the reconstructed IR
vector potential. We can extract the phase difference between simulation and reconstruction by a weighted
average procedure:

ϕ =

´
dω |P̃(ω) |2∠P̃(ω)´

dω |P̃(ω) |2
(A.2)

where ∠ indicates the phase and the integration domain extends over frequencies for which |P̃(ω)|2 is larger
than 50% of its peak value. The related variance is:

σ2
ϕ =

´
dω |P̃(ω) |2

[
∠P̃(ω)−ϕ(ω)

]2
´
dω |P̃(ω) |2

. (A.3)

By dividing these quantities by the central IR frequency, ωIR, we obtain the residual time shift between the
simulated and the reconstructed IR vector potential, and the associated variance:

∆τ =
ϕ

ωIR
, σ2

∆τ =
σ2
ϕ

ω2
IR

. (A.4)
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Appendix B. Analytical expression of the IR field and of the Volkov phase

One of the keys of the rACE approach is the analytical definition of the XUV and IR pulses, which allows
deriving an analytical expression for the spectrogram. Considering equation (1), this also means computing
the IR electric field and the Volkov phase (equation (3)) analytically.

Starting from the definition of the IR vector potential in equation (15), by deriving this expression we
can write the IR electric field as:

EIR (t) = A0 E (t)
{
[ωIR +βr (t− t0)] · sin

[
ωIR (t− t0)+

1

2
βr (t− t0)

2
+ϕCEO

]
+

t− t0
σ2
IR

· cos
[
ωIR (t− t0)+

1

2
βr (t− t0)

2
+ϕCEO

]}
. (B.1)

This expression will give the chirp of the streaked photoelectron wavepacket in equation (12).
Instead, from the definition of Volkov phase in equation (3), we can write it as:

ϕ(t) =−pc

ˆ +∞

t
dt ′AIR (t

′)−
ˆ +∞

t
dt ′

A2
IR (t

′)

2
(B.2)

and rewriting the cosine term in equation (15) as the sum of two complex exponentials, the first integral
gives:

ˆ +∞

t
dt ′AIR (t

′) =
A0σIR

√
π

2

·

 (−1)
1
4 eiϕCEOe

− iω2
IRσ

2
IR

2βrσ
2
IR+2i√

2βrσ2
IR + 2i

[
erf

(
(−1)

3
4
[
(t− t0)

(
βrσ

2
IR + i

)
+ωIRσ

2
IR

]
σIR
√
2βrσ2

IR + 2i

)
− 1

]

+
(−1)

3
4 e−iϕCEOe

iω2
IRσ

2
IR

2βrσ
2
IR−2i√

2βrσ2
IR − 2i

[
erf

(
(−1)

1
4
[
(t− t0)

(
βrσ

2
IR − i

)
+ωIRσ

2
IR

]
σIR
√
2βrσ2

IR − 2i

)
− 1

] (B.3)

where erf is the error function, and the second integral is:

ˆ +∞

t
dt ′

A2
IR (t

′)

2
=

A2
0

√
πσIR
4

{[
1− erf

(
t− t0
σIR

)]

+
(−1)

1
4 e2iϕCEOe

− iω2
IRσ

2
IR

βrσ
2
IR+i

2
√
βrσ2

IR + i

[
erf

(
(−1)

3
4
(
(t− t0)

(
βrσ

2
IR + i

)
+ωIRσ

2
IR

)
σIR
√
βrσ2

IR + i

)
− 1

]

+
(−1)

3
4 e−2iϕCEOe

iω2
IRσ

2
IR

βrσ
2
IR+i

2
√
βrσ2

IR − i

[
erf

(
(−1)

1
4
(
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(
βrσ

2
IR − i

)
+ωIRσ

2
IR

)
σIR
√
βrσ2

IR − i

)
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] . (B.4)

We exploited these expressions for computing the Volkov phase difference when multiple XUV pulses are
present.

Appendix C. Analytical solution for satellite XUV pulses

Starting from equation (2), where we define K= p2/2 as the final kinetic energy of the photoelectrons, we
assume that the XUV pulse is much shorter than the IR one. In this condition, each XUV pulse generates a
photoelectron wavepacket almost instantaneously, and their interaction with the IR field for t< τ can be
neglected. We can thus replace the Volkov phase defined in equation (3), which depends on t, with its value
for t= τ . Therefore, if ϕ(t)≃ ϕ(τ), we obtain:

S(p, τ)≃
∣∣∣∣eiϕ(τ)ˆ +∞

−∞
dtEX (t− τ) d [p] ei(K+Ip)t

∣∣∣∣2 . (C.1)

Defining the streaked photoelectron wavepacket in the time domain as in equation (11), the squared
modulus of its Fourier transform will give the spectrogram (equation (13)).
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In typical experimental conditions, generating a perfectly isolated single attosecond pulse is challenging.
Smaller pulse satellites separated by a half- or full-cycle of the driving radiation are often unavoidable,
complicating the temporal structure of the XUV radiation. Here we assume the presence of one main XUV
pulse and of a satellite pulse, either anticipated or delayed with respect to the main one. Since both pulses
lead to the emission of a photoelectron wavepacket, we can describe their structure in the time domain as in
equation (21), where ρr the amplitude ratio between the main pulse and its satellite and δt is their distance in
time. The phase term in equation (21) accounts for the delay-dependent sign of the pulse replica in the HHG
process. For δt =±π/ωIR, the sign of the driving field will be opposite in the emission of the two pulses,
while for δt =±2π/ωIR the driving field will have the same direction in both emission events.

Under the previously discussed approximation, we can write the spectrogram as the squared modulus of
the Fourier transform of the time-dependent photoelectron wavepacket in equation (21), and by exploiting
the linearity of the Fourier transform we obtain:

S(p, τ) =
∣∣∣eiϕ(τ)F {χs (t, τ)}+ eiϕ(τ+δt) ρr e

−iωIRδt F {χs (t− δt, τ − δt)}
∣∣∣2 (C.2)

where χs(t, τ) is defined as in equation (11). From the time-shifting property of the Fourier transform
(equation (7)), considering that ω = p2/2+ Ip, we can write:

S(p, τ) =
∣∣∣eiϕ(τ)F {χs (t, τ)}+ eiϕ(τ+δt) ρr e

−iωIRδte−i(p2/2+Ip)δt F {χs (t, τ − δt)}
∣∣∣2 . (C.3)

Collecting an eiϕ(τ) factor, associated with the Volkov phase of the main pulse, from both terms, we can then
write:

S(p, τ) =
∣∣∣χ̃s (p, τ)+ ρr e

i∆ϕ(τ,δt) e−iωIRδt e−i(p2/2+Ip)δt χ̃s (p, τ − δt)
∣∣∣2 (C.4)

where, being a pure phase term, we omitted the collected factor, and we defined the Fourier transform of the
streaked photoelectron wavepacket χ̃s(p, τ) = F{χs(t, τ)}. In this expression, we defined:

∆ϕ(τ,δt) = ϕ(τ − δt)−ϕ(τ) (C.5)

as the difference of the Volkov phases for the satellite and the main pulse.
To calculate this quantity, we need to compute twice the analytical expression for the Volkov phase in the

central momentum approximation derived in B. However, albeit analytical, this involves several evaluations
of the error function, thus making the nonlinear fit computationally expensive. For many applications, an
approximate evaluation [27] is enough. Assuming the integral of A2

IR(t) negligible, if the central momentum
is the same for all electron wavepackets, the difference in Volkov phase between the main pulse and the
satellite can be written as:

∆ϕ(τ,δt)≃ pc · [B(τ + δt)−B(τ)] ,
dB(t)

dt
= AIR (t) . (C.6)

This expression can be evaluated much faster and gives accurate results when the IR amplitude is small
enough.

In conclusion, by inserting into equation (C.4) the analytical expression of the IR field and the definition
of photoelectron wavepacket in the frequency domain (equation (14)), we are able to fit the simulated and
experimental spectrograms. Its generalization for a larger number of satellite pulses is straightforward.
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