The global capacity for renewable electricity generation has surged, with distributed photovoltaic generation being the primary driver. The increasing penetration of non-programmable renewable Distributed Energy Resources (DERs) presents challenges for properly managing distribution networks, requiring advanced voltage regulation techniques. This paper proposes an innovative decentralised voltage strategy that considers DERs, particularly inverter-based ones, as autonomous regulators in compliance with the state-of-the-art European technical standards and grid codes. The proposed method uses an optimal reactive power flow that minimises voltage deviations along all the medium voltage nodes; to check the algorithm’s performance, it has been applied to a small-scale test network and on a real Italian medium-voltage distribution network, and compared with a fully centralised ORPF. The results show that the proposed decentralised autonomous strategy effectively improves voltage profiles in both case studies, reducing voltage deviation by a few percentage points; these results are further confirmed through an analysis conducted over several days to observe how seasons affect the results.

Decentralised Voltage Regulation through Optimal Reactive Power Flow in Distribution Networks with Dispersed Generation

Daccò, Edoardo;Falabretti, Davide;Ilea, Valentin;Merlo, Marco;Nebuloni, Riccardo;Spiller, Matteo
2024-01-01

Abstract

The global capacity for renewable electricity generation has surged, with distributed photovoltaic generation being the primary driver. The increasing penetration of non-programmable renewable Distributed Energy Resources (DERs) presents challenges for properly managing distribution networks, requiring advanced voltage regulation techniques. This paper proposes an innovative decentralised voltage strategy that considers DERs, particularly inverter-based ones, as autonomous regulators in compliance with the state-of-the-art European technical standards and grid codes. The proposed method uses an optimal reactive power flow that minimises voltage deviations along all the medium voltage nodes; to check the algorithm’s performance, it has been applied to a small-scale test network and on a real Italian medium-voltage distribution network, and compared with a fully centralised ORPF. The results show that the proposed decentralised autonomous strategy effectively improves voltage profiles in both case studies, reducing voltage deviation by a few percentage points; these results are further confirmed through an analysis conducted over several days to observe how seasons affect the results.
2024
File in questo prodotto:
File Dimensione Formato  
electricity-05-00008.pdf

accesso aperto

: Publisher’s version
Dimensione 9.24 MB
Formato Adobe PDF
9.24 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1264679
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? ND
social impact