In-memory computing (IMC) can accelerate data-intensive tasks, such as matrix-vector multiplication (MVM) or artificial neural networks (ANNs) inference, by means of the crosspoint memory array, allowing to reduce time and energy consumption. IMC accuracy, however, is affected by nonidealities, such as variability of the conductive weights or IR drop along wires due to parasitic resistances, whose impact steeply increases with the increase of array size. This work proposes a compact model to assess the impact of nonidealities for various circuital implementations, together with architectural schemes for their mitigation based on replicated arrays. The proposed mitigation techniques allow to restore the ANN accuracy from 72.7% to 94.9%, close to the software accuracy of 96.9%, in view of an increased area and energy consumption.

Compact Modeling and Mitigation of Parasitics in Crosspoint Accelerators of Neural Networks

Lepri, N.;Glukhov, A.;Mannocci, P.;Porzani, M.;Ielmini, D.
2024-01-01

Abstract

In-memory computing (IMC) can accelerate data-intensive tasks, such as matrix-vector multiplication (MVM) or artificial neural networks (ANNs) inference, by means of the crosspoint memory array, allowing to reduce time and energy consumption. IMC accuracy, however, is affected by nonidealities, such as variability of the conductive weights or IR drop along wires due to parasitic resistances, whose impact steeply increases with the increase of array size. This work proposes a compact model to assess the impact of nonidealities for various circuital implementations, together with architectural schemes for their mitigation based on replicated arrays. The proposed mitigation techniques allow to restore the ANN accuracy from 72.7% to 94.9%, close to the software accuracy of 96.9%, in view of an increased area and energy consumption.
2024
in-memory computing, ir drop, hardware acceleration, artificial neural networks
File in questo prodotto:
File Dimensione Formato  
_2023__TED_re_resubmission_v1.1.pdf

accesso aperto

Descrizione: Reviewed version
: Pre-Print (o Pre-Refereeing)
Dimensione 1.9 MB
Formato Adobe PDF
1.9 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1263234
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact