This research work describes the structural optimization of the MicroMED Dust Analyzer, an Optical Particle Counter developed for the ESA ExoMars 2022 mission. Topology Optimization, a non-conventional design technique was adopted to obtain a lighter component, a valuable achievement for aerospace and space scientific instruments design. In particular, two solutions for the instrument optical bench were proposed and assessed relying on a classical finite element approach, comparing the improved performance with the current design. The optimization outcome proved the adopted design workflow robustness and provided promising results in view of a possible mechanical design enhancement of the MicroMED Dust Analyzer instrument. Indeed, a mass budget saving of about 55% of the considered design domain was achieved, and the dynamic behaviour of the optical bench was improved by up to 50% of the first natural frequency value. Finally, a mockup of the lightened optical bench was manufactured, and the redesign effectiveness was proven by comparing the numerical mechanical resonances with the ones obtained experimentally. An error smaller than 5% was found on the first natural frequency, validating the performed optimization approach.

Structural Optimization of MicroMED Dust Analyzer

M. G. Corti;B. Saggin;D. Scaccabarozzi
2023-01-01

Abstract

This research work describes the structural optimization of the MicroMED Dust Analyzer, an Optical Particle Counter developed for the ESA ExoMars 2022 mission. Topology Optimization, a non-conventional design technique was adopted to obtain a lighter component, a valuable achievement for aerospace and space scientific instruments design. In particular, two solutions for the instrument optical bench were proposed and assessed relying on a classical finite element approach, comparing the improved performance with the current design. The optimization outcome proved the adopted design workflow robustness and provided promising results in view of a possible mechanical design enhancement of the MicroMED Dust Analyzer instrument. Indeed, a mass budget saving of about 55% of the considered design domain was achieved, and the dynamic behaviour of the optical bench was improved by up to 50% of the first natural frequency value. Finally, a mockup of the lightened optical bench was manufactured, and the redesign effectiveness was proven by comparing the numerical mechanical resonances with the ones obtained experimentally. An error smaller than 5% was found on the first natural frequency, validating the performed optimization approach.
2023
MicroMED Dust Analyzer; ExoMars 2022; optical particle counters; topology optimization; thermomechanical design
File in questo prodotto:
File Dimensione Formato  
applsci-13-12810 (1).pdf

accesso aperto

Descrizione: Paper
: Publisher’s version
Dimensione 9.8 MB
Formato Adobe PDF
9.8 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1263157
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact