This research work describes the structural optimization of the MicroMED Dust Analyzer, an Optical Particle Counter developed for the ESA ExoMars 2022 mission. Topology Optimization, a non-conventional design technique was adopted to obtain a lighter component, a valuable achievement for aerospace and space scientific instruments design. In particular, two solutions for the instrument optical bench were proposed and assessed relying on a classical finite element approach, comparing the improved performance with the current design. The optimization outcome proved the adopted design workflow robustness and provided promising results in view of a possible mechanical design enhancement of the MicroMED Dust Analyzer instrument. Indeed, a mass budget saving of about 55% of the considered design domain was achieved, and the dynamic behaviour of the optical bench was improved by up to 50% of the first natural frequency value. Finally, a mockup of the lightened optical bench was manufactured, and the redesign effectiveness was proven by comparing the numerical mechanical resonances with the ones obtained experimentally. An error smaller than 5% was found on the first natural frequency, validating the performed optimization approach.
Structural Optimization of MicroMED Dust Analyzer
M. G. Corti;B. Saggin;D. Scaccabarozzi
2023-01-01
Abstract
This research work describes the structural optimization of the MicroMED Dust Analyzer, an Optical Particle Counter developed for the ESA ExoMars 2022 mission. Topology Optimization, a non-conventional design technique was adopted to obtain a lighter component, a valuable achievement for aerospace and space scientific instruments design. In particular, two solutions for the instrument optical bench were proposed and assessed relying on a classical finite element approach, comparing the improved performance with the current design. The optimization outcome proved the adopted design workflow robustness and provided promising results in view of a possible mechanical design enhancement of the MicroMED Dust Analyzer instrument. Indeed, a mass budget saving of about 55% of the considered design domain was achieved, and the dynamic behaviour of the optical bench was improved by up to 50% of the first natural frequency value. Finally, a mockup of the lightened optical bench was manufactured, and the redesign effectiveness was proven by comparing the numerical mechanical resonances with the ones obtained experimentally. An error smaller than 5% was found on the first natural frequency, validating the performed optimization approach.File | Dimensione | Formato | |
---|---|---|---|
applsci-13-12810 (1).pdf
accesso aperto
Descrizione: Paper
:
Publisher’s version
Dimensione
9.8 MB
Formato
Adobe PDF
|
9.8 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.