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Abstract: This research work describes the structural optimization of the MicroMED Dust Analyzer,
an Optical Particle Counter developed for the ESA ExoMars 2022 mission. Topology Optimiza-
tion, a non-conventional design technique was adopted to obtain a lighter component, a valuable
achievement for aerospace and space scientific instruments design. In particular, two solutions for the
instrument optical bench were proposed and assessed relying on a classical finite element approach,
comparing the improved performance with the current design. The optimization outcome proved the
adopted design workflow robustness and provided promising results in view of a possible mechanical
design enhancement of the MicroMED Dust Analyzer instrument. Indeed, a mass budget saving of
about 55% of the considered design domain was achieved, and the dynamic behaviour of the optical
bench was improved by up to 50% of the first natural frequency value. Finally, a mockup of the
lightened optical bench was manufactured, and the redesign effectiveness was proven by comparing
the numerical mechanical resonances with the ones obtained experimentally. An error smaller than
5% was found on the first natural frequency, validating the performed optimization approach.

Keywords: MicroMED Dust Analyzer; ExoMars 2022; optical particle counters; topology optimization;
thermomechanical design

1. Introduction

Aerospace components demand lightness as an essential design characteristic, a par-
ticularly relevant requirement in the space industry as well. Indeed, mass reduction
is considered one of the most valuable drivers during the thermomechanical design of
space hardware and aerospace components [1–4]. This objective can be effectively tackled
by coupling the choice of high strength-to-density ratio materials with structural opti-
mization, resulting in performant and lightweight components. However, due to their
excessively high costs in procurement and manufacturing, qualification, and certifica-
tion, [5] innovative materials have had low mileage concerning the design of spacecrafts
components. Conversely, structural optimization tools played a significant role in the
aerospace industry. Optimal design proposals can be obtained by exploiting a streamlined
design-to-manufacturing track.

Among the non-conventional thermomechanical design approaches, the Topology
Optimization (TO) perfectly fits this framework. The TO couples mathematical optimiza-
tion algorithms to Finite Elements Analysis (FEA) to suggest structural design outcomes
ensuring an optimal material distribution within a given reference domain. Specified
optimization objectives, design constraints, loads, and boundary conditions are applied to
the study case [6]. Stresses, displacements, natural frequencies, and geometrical features
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are typically encompassed as design constraints towards the achievement of an optimal
solution, although they can also be included as the TO objectives to be pursued within the
optimization iterations [7].

Since the optimal material distribution may lead to complex geometry, the TO out-
comes can become ready-made Additive Manufacturing (AM) designs. Alternatively,
a further post-processing stage can be introduced to adapt the design for traditional—
material subtractive—manufacturing techniques. Nevertheless, this strategy allows to
bypass the time-consuming engineering and iterative design mechanisms, as the optimal
solution coincides with the outcome of the process itself. The TO is rapidly widespread
in aerospace components design and improvement, and a multitude of examples can
be retrieved in the literature [8,9]. Worth mentioning are the VEGA launcher connector
support [10], a structural component obtained via a frequency-driven TO, or the Airbus
A320 nacelle hinge bracket [11], an aircraft part manufactured exploiting Additive Layer
Manufacturing (ALM) after its optimization. Another significant example is the antenna
support for the ESA Sentinel 1 satellite [12,13], a component redesigned exploiting TO
towards the achievement of mass minimization and finally manufactured via Selective
Laser Sintering (SLS).

This research work extensively describes the MicroMED Dust Analyzer Optical Bench
(OB) TO-driven redesign workflow and results assessment activities. The instrument is an
amplitude-dependent single Optical Particle Counter (OPC) designed and qualified for
the ESA ExoMars 2022 mission towards Mars [14–16]. The instrument includes several
subassemblies and hardware components arranged in a compact and lightweight design,
whose locations are depicted in Figure 1 and was intended to infer the airborne dust size
and size distribution in situ at the lowest troposphere of the Red Planet [17–19]. This
would be a groundbreaking achievement because, at present, data about dust on Mars
were exclusively acquired using remote sensing (e.g., thermal IR instruments, near-IR
spectrometers, and Terrestrial ground-based telescopes).
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A proper fluidic system was designed to suction the Martian aerosol—a multiphase 
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Figure 1. MicroMED Dust Analyzer model overview (a) and exploded view (b). The main sub-
assemblies are highlighted: A. External Envelope; B. Inlet/Outlet; C. Optical Head; D. Pump Group;
E. Laser Group; F. Optical Bench.

A proper fluidic system was designed to suction the Martian aerosol—a multiphase
mixture of gases and solid dust particles—and transfer it to the MicroMED Optical Head
(OH). There, the fines are invested by a collimated low-power NIR laser beam (having a
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single-mode nominal optical power of 150 mW and a lasing wavelength of 830 ± 5 nm) and
finally returned to the Martian environment. The scattered light produced by the interaction
between the particles and the laser is conveyed by a parabolic mirror towards a photodiode
detector, responsible for the particle size measurements. MicroMED functional components
and subassemblies are mounted on the OB and shielded from the harsh Martian land by
the External Envelope (EE) [20–22].

The activities described in the following aim to complete the redesign work aiming
to obtain two different optimal OB design proposals with an improved performance. The
feasibility design was successfully carried out by the author in [23], but the numerical
investigation has been extended, focusing on the evaluation of the thermo-elastic behaviour
of the proposed solutions in the worst-case temperature. Moreover, the experimental
assessment of the modal behaviour of a mockup of one of the two optimal solutions is
presented, aiming to validate the presented methodology and related results.

The added value of this research work lies in the innovative approach adopted for the
OB improvement. The latter is presented in Section 2 along with the FEA procedure in-
volved within the parts’ numerical assessment, whose results are summarized in Section 3.
The achievements consist of optimal design proposals to improve the current—suboptimal—
material arrangement within the OB. Starting from the achieved design proposals, as a
further improvement of the research activity a mockup of the lightened OB was manu-
factured and tested to prove the effectiveness of the TO design. Finally, the experimental
validation campaign is presented in Section 4, comparing the outcomes with the numerical
ones and completing the OB optimization activity.

2. Materials and Methods

The MicroMED OB is the support plate on which the instrument subassemblies and
functional components are firmly fixed. The OB is a ribbed aluminum component (i.e.,
manufactured in Al7075-T6 aluminum alloy) characterized by high mechanical stiffness,
provided by the grid of ribs lying on its interface plate. In this research work, the main
investigation dealt with the topology and sizing of the OB ribs, pursuing the optimal con-
figuration towards mass minimization achievement (i.e., hereafter referred to as Model A)
maintaining comparable dynamic performance with respect to the current OB design.
Furthermore, a different layout was probed, aiming to optimize the OB dynamic per-
formance (i.e., hereafter referred to as Model B). The latter proposal was obtained by
maintaining the unchanged mass budget allocated to the ribs grid while maximizing the
OB resonance frequencies.

The TO method was preferred to the other structural optimization approaches, i.e.,
the size and the shape optimization methods, because of its design freedom. Both Model A
and Model B redesign studies exploited two commercial software programs, i.e., PTC
Creo Parametric/Simulate and Altair Inspire. The former was adopted for computer-
aided modelling and FEAs, while the latter was employed for the TO. A schematic of the
workflow exploited for the redesign is depicted in Figure 2.

Within the optimization process, Altair Inspire relies on a computational method
based on the material distribution technique. This process adopts the material density as
the design variable and returns an optimal material distribution in a discretized reference
domain [24,25]. A binary solid model is produced, and for each reference domain finite
element either a unitary or null value is assigned to the design variable. Consequently,
a finite element will be finally part of the optimal structure only if its associated design
variable has a non-null value. In the latter case, the material density is assigned to the finite
element. The software engine, to cope with the occurrence of the intermediate values of the
design value (i.e., between 0 and 1) during the optimization iterations, adopts a penalization
approach based on the Solid Isotropic Material with Penalization (SIMP) algorithm [26,27].
Therefore, the outcome will be composed of either voids or solids.
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Figure 2. Block chart of the phases included within the OB redesign and optimization workflow.

In this research work, the optimization cycles imposed the finite element structure me-
chanical stiffness maximization as the design target. At the beginning of each iteration, the
overall mass of the reference domain was progressively reduced by a percentage within the
total reference domain volume. For the OB optimization, at the beginning of each TO step,
70% of the design volume removed was imposed as an output condition. Before running
the optimizations, a filled OB solid model was developed, as depicted in Figure 3. Solid
model defeaturing was carried out as the first task to reduce the computational complexity
of the FEAs, while maintaining the representativeness of the numerical outcomes.
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Figure 3. Altair Inspire TO model of the OB. The brown region represents the design domain subject
to the SIMP approach and the grey one was left unaltered during the optimization iterations.

The Finite Element Model (FEM) held three lumped masses connected via rigid links to
the OB areas intended to support the instrument subassemblies. Such areas were excluded
from the design domain and thus were not involved in the optimization cycles. These
features—92 g for the OH + Inlet/Outlet (IO), 51 g for the Pump Group (PG), and 29 g for
the Laser Group (LG)—were introduced to consider the main instrument’s subassemblies
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but in the meantime to run a streamlined optimization process. The lumped masses
were estimated by assigning the aluminum density (i.e., 2819 kg/m3) and assuming a
10% margin as the worst-case scenario. The material depletion of the design domain
(Figure 3), i.e., the only region eligible for the TO, was performed by generating constant
height ribs in the direction perpendicular to the OB floor. No voids nor holes throughout
the height of the ribs were allowed for the final design.

The loading condition applied for the optimization was a quasi-static acceleration of
1000 m/s2 on each lumped mass, in each direction. Each iteration for Model A concluded
only when the result produced a new model having the first natural frequency fulfilling the
design dynamic requirement, thus when the first three resonances were equal or larger than
the current OB ones. On the other hand, for the Model B development, the optimization
was interrupted only when the optimal material distribution was identified, i.e., the one
providing the highest value possible for the component’s natural frequencies. In this case,
the design constraint was set on the mass budget spent on the ribs grid, imposed equal
to the current OB one. Moreover, as pointed out in Figure 2, following the TO, a post-
processing activity was performed on the optimal solutions, with the aim of smoothing
and homogenizing the optimal ribs grid towards a milling/Electrical Discharge Machining
(EDM) manufacturing process. Preliminarily, a FEM of the current OB was developed
in PTC Creo Parametric/Simulate environment to define the baseline performance to be
exploited during the TO. As shown in Figure 4, pin constraints were placed at the OB
peripheral holes to simulate the MicroMED instrument mounting interface on the Dust
Suite, the ESA ExoMars 2022 lander surface platform. Mesh refinement was applied to the
FEM, obtaining an overall of 32,371 finite elements, split between 28,704 solid tetrahedrons
and 3667 shell triangles. Likewise, the FEMs for the optimal and post-processed OBs were
developed. The performance of the models was estimated relying on the FEAs set:
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masses, rigid links, shells, and constraints) are highlighted. The mesh was applied to the model (c).

• Modal analysis aiming to estimate the first five natural frequencies;
• Quasi-static analyses applying a load of 1000 m/s2, probing the state of stress distri-

bution of the models considering three different loading directions (i.e., X, Y, and Z
according to the reference frame reported in Figure 4) and resembling the excitation
expected during the takeoff and landing phases of the mission; and

• Thermoelastic analyses in either non-operational (i.e., the cold case, considering a
temperature shift from the reference +20 ◦C to the target −40 ◦C) or operational (i.e.,
the hot case, likewise the cold case but within the range +20 ◦C and +40 ◦C) conditions.

The figure of merit to state the quasi-static and thermoelastic FEAs goodness was
the Margin of Safety (MoS). The MoS was evaluated to highlight the resistance of the
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mechanical component during the assessments, relying on the Von Mises yield criterion for
ductile materials. The MoS was computed referring to the following formulation:

MoS =
σYS

η · σVM
− 1 (1)

In the equation, σYS was the material yielding stress (i.e., 503 MPa for the Al7075-T6),
η was the admissible safety factor (i.e., 1.5 as reported in the ECSS-E-ST-33-01C design
standard [28]), and σVM was the maximum Von Mises stress resulting from the simulation.
The assessment was considered satisfactory with positive MoS.

Moreover, the thermal deformations induced within the temperature ranges were
probed both for the current and the optimal OBs. The intent was to quantify the impact of
the temperature on the structural stability of the MicroMED hardware, i.e., estimating the
misalignment between the laser light and the aerosol flux due to the thermal deformations
of the mechanical parts for the cold and hot cases. As depicted in Figure 5, the OH was
assembled with the OB; on the former, the Laser Delivery Group (LDG, composed of the
213 and 11B parts) was fastened, as well as the IO, which was split between the Inlet Tube
(IT, composed by the 022 and 026 parts) and the Exhaust Tube (ET, or the 023 part). A
cloud of probes to measure the displacements along the X, Y, and Z axes was introduced at
the LDG, IT, and ET extremities facing the sampling volume inside the OH. The relative
shift among the probes allowed for an estimation of the misalignment at the instrument
sampling volume. According to its magnitude, the latter can produce a negative impact on
the MicroMED performance, jeopardizing the particle size identification and increasing the
overall measurement uncertainty.
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3. Results

In this section, the OB redesign outcomes are presented and discussed. The results of
the FEAs are outlined in the following firstly for the current OB preliminary investigation,
then for the Model A and Model B proposals.

3.1. Current OB

The MicroMED current OB was manufactured with the Al7075-T6 aluminium alloy,
leading to a mass budget of about 68.5 g. The material allocated to the ribs grid—which is
the one eligible to be reduced—was estimated to be about 7 g (i.e., approximately 10% of
the OB mass).

The results of the performed FEAs set are summarized in Table 1 and the most critical
loading conditions (i.e., 1000 m/s2 acceleration along the Y-axis for the quasi-static analysis
and the cold case for thermoelastic stresses) are reported in Figure 6. The numerical
investigation pointed out that the current OB’s first natural frequency was about 407 Hz.
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Moreover, the maximum Von Mises stress arising for the quasi-static and thermoelastic
analyses was approximately 84 MPa and 12 MPa, respectively. A largely positive MoS of
about 3 and 28 was obtained for the former and the latter case studies.

Table 1. MicroMED current OB FEAs outcomes.

Resonances [Hz] Von Mises Quasi-Static Stresses [MPa]

f1 f2 f3 f4 f5 σX MoS σY MoS σZ MoS
407 530 798 926 1193 29 10.7 84 2.99 45 6.50

Von Mises Thermoelastic Stresses [MPa]

Cold case MoS Hot case MoS
12 28 4 88
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Figure 6. MicroMED current OB first resonance mode shape (a); Von Mises stress distribution [MPa]
with 1000 m/s2 load in Y direction (b) and thermoelastic cold case (c).

Finally, the thermal deformations estimated within the sampling volume in the OH
are reported. The results are shown for both the cold case and the hot case in Figure 7,
completing the preliminary activities for the baseline identification. As can be noticed,
no significant relative displacement was highlighted, suggesting the thermal stability of
the current OB assembly. Indeed, a maximum relative displacement of about 2.1 µm
and 710 nm was computed, values which are three orders of magnitude smaller than the
sampling volume ellipse major axis (i.e., about 1 mm) obtained crossing the laser beam
with the multiphase flow in the OH. The displacements measured at the probes in the three
directions with respect to the reference frame XYZ are reported in Appendix B.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 20 
 

Table 1. MicroMED current OB FEAs outcomes. 

Resonances [Hz] Von Mises Quasi-Static Stresses [MPa] 

f1 f2 f3 f4 f5 𝜎𝑋 𝑀𝑜𝑆 𝜎𝑌 𝑀𝑜𝑆 𝜎𝑍 𝑀𝑜𝑆 

407 530 798 926 1193 29 10.7 84 2.99 45 6.50 

Von Mises Thermoelastic Stresses [MPa] 

Cold case 𝑀𝑜𝑆 Hot case 𝑀𝑜𝑆 

12 28 4 88 

Finally, the thermal deformations estimated within the sampling volume in the OH 

are reported. The results are shown for both the cold case and the hot case in Figure 7, 

completing the preliminary activities for the baseline identification. As can be noticed, no 

significant relative displacement was highlighted, suggesting the thermal stability of the 

current OB assembly. Indeed, a maximum relative displacement of about 2.1 µm and 710 

nm was computed, values which are three orders of magnitude smaller than the sampling 

volume ellipse major axis (i.e., about 1 mm) obtained crossing the laser beam with the 

multiphase flow in the OH. The displacements measured at the probes in the three direc-

tions with respect to the reference frame XYZ are reported in Appendix B. 

 
(a) (b) 

Figure 7. Overview of MicroMED current OB assembly relative thermal deformations for the cold 

case (a) and displacements at the defined probes (b). 

3.2. Optimal OB—Model A 

The rough optimal solution to be post-processed was obtained through three iterative 

TO cycles, whose outcomes are presented in Figure 8. The overall computational time re-

quired for completing the optimization was about 48 h, using an Intel® Core™ i7-12700H 

processor. On the other hand, the definitive Model A design is depicted in Figure 9. As-

signing Al7075-T6 as material (i.e., having a density of about 2810 kg/m3) a mass of 64.63 

g was estimated, of which 3.18 g were allocated to the ribs grid. 

 

Figure 8. TO iterative cycles results (blue colour) for the Model A. 

Figure 7. Overview of MicroMED current OB assembly relative thermal deformations for the cold
case (a) and displacements at the defined probes (b).



Appl. Sci. 2023, 13, 12810 8 of 18

3.2. Optimal OB—Model A

The rough optimal solution to be post-processed was obtained through three iterative
TO cycles, whose outcomes are presented in Figure 8. The overall computational time
required for completing the optimization was about 48 h, using an Intel®Core™ i7-12700H
processor. On the other hand, the definitive Model A design is depicted in Figure 9.
Assigning Al7075-T6 as material (i.e., having a density of about 2810 kg/m3) a mass of
64.63 g was estimated, of which 3.18 g were allocated to the ribs grid.
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masses, rigid links, shells, and constraints) are highlighted. The mesh was applied to the model (c).

For the Model A, the FEM comprised 32,042 finite elements, split between 28,282 solid
tetrahedrons and 3767 shell triangles. The FEAs results are summarized in Table 2, while
the most critical loading conditions (i.e., 1000 m/s2 acceleration along the Y-axis for the
quasi-static analysis and the cold case for thermoelastic stresses) are reported in Figure 10.
In particular, a first natural frequency of about 412 Hz was estimated, while a maximum
Von Mises stress of 107 MPa (i.e., leading to a MoS of 2.12) and 11 MPa (i.e., leading to a
MoS of 29) was found for the quasi-static and the thermoelastic analyses, respectively.

Table 2. MicroMED Model A OB FEAs outcomes.

Resonances [Hz] Von Mises Quasi-Static Stresses [MPa]

f1 f2 f3 f4 f5 σX MoS σY MoS σZ MoS
412 521 627 745 791 39 7.50 107 2.12 50 5.74

Von Mises Thermoelastic Stresses [MPa]

Cold case MoS Hot case MoS
11 29 4 88
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Figure 10. MicroMED Model A first resonance mode shape (a); Von Mises stress distribution [MPa]
with 1000 m/s2 load in Y direction (b) and thermoelastic cold case (c).

The thermal deformations are reported in Figure 11. Negligible relative displacements
were obtained (i.e., 581 nm and 499 nm for the cold case and hot case, respectively),
validating the thermo-mechanical behaviour of the proposed solution. The displacements
measured at the probes in the three directions with respect to the reference frame XYZ are
reported in Appendix B.
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Figure 11. Overview of MicroMED Model A assembly relative thermal deformations for the cold
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3.3. Optimal OB-Model B

The rough optimal solution was obtained via three TO iterations, whose outcomes are
reported in Figure 12. The Model B final design proposal is depicted in Figure 13.
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Figure 13. Model B without (a) and with (b) the stiffening ribs grid. FEAs features (i.e., lumped
masses, rigid links, shells, and constraints) are highlighted. The mesh was applied to the model (c).

The optimization process took an overall computational time comparable with the
Model A design process. For the Model B, the FEM comprised 32,999 finite elements, split
between 29,240 solid tetrahedrons and 3759 shell triangles. The FEAs results are summa-
rized in Table 3, while the most critical loading conditions (i.e., 1000 m/s2 acceleration
along the Y-axis for the quasi-static analysis and the cold case for thermoelastic stresses)
are reported in Figure 14.

Table 3. MicroMED Model B OB FEAs outcomes.

Resonances [Hz] Von Mises Quasi-Static Stresses [MPa]

f1 f2 f3 f4 f5 σX MoS σY MoS σZ MoS
607 725 872 1104 1240 25 12.6 87 2.86 34 8.85

Von Mises Thermoelastic Stresses [MPa]

Cold case MoS Hot case MoS
31 9.9 10 31.7
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Figure 14. MicroMED Model B first resonance mode shape (a); Von Mises stress distribution [MPa]
with 1000 m/s2 load in Y direction (b) and thermoelastic cold case (c).

In particular, a first natural frequency of about 607 Hz was estimated, while a maxi-
mum Von Mises stress of 87 MPa (i.e., leading to a MoS of 2.86) and 31 MPa (i.e., leading to
a MoS of 9.9) was found for the quasi-static and the thermoelastic analyses, respectively.
The thermal deformation is reported in Figure 15. Negligible relative displacements were
obtained for the model B design (i.e., 761 nm and 752 nm for the cold case and hot case,
respectively). The displacements measured at the probes in the three directions with respect
to the reference frame XYZ are reported in Appendix B.
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3.4. Optimizations Findings Discussion

The numerical results showed that the first natural frequency of the current OB was
about 407 Hz. As depicted in Figure 6, the corresponding mode shape included an alternate
bending of the OB produced by the heavy OH lumped mass on its footprint. The motion
slightly involved the MPG and LG subassemblies as well. Moreover, the quasi-static
analyses pointed out that the worst loading case was the one encompassing the 1000 m/s2

acceleration along the Y-axis. This was attributed to the larger mechanical compliance
of the OB in the latter direction with respect to the others. Finally, the cold case and the
hot case analyses suggested that for both the foreseen temperature ranges fully compliant
stress values were achieved, and negligible thermal deformations as well.

With the Model A proposal, the TO guaranteed a mass budget of 64.63 g. The mass
saving was approximately 55% of the mass allocated to the ribs grid (i.e., 3.18 g against
about 7 g of the current OB), corresponding to approximately 6% of the overall component
mass. The modal analyses highlighted that the Model A first natural frequency was at about
412 Hz, i.e., a value comparable with the current OB one. Moreover, comparing Figure 6
with Figure 10, a change in the mode shape can be noticed: the first natural frequency mode
shape involved mainly the LG, a favorable condition considering the motion is displaced
from the OH footprint, i.e., the most sensible region of MicroMED to preserve the alignment
of the instrument. In addition, all the quasi-static and thermoelastic analyses provided
positive safety margins, proving the effectiveness and robustness of the proposed design.

Similarly, the numerical results achieved with the Model B were promising. Indeed,
the modal analysis showed that the optimal component natural frequencies were taking
place at values larger than the current OB ones. In particular, the first natural frequency
was at about 607 Hz, corresponding to an increase of approximately 50% with respect to
the current OB one while maintaining a comparable mass budget. Likewise, the Model
A, the mode shape was slightly shifted towards the LG footprint (Figure 14). Moreover,
the quasi-static analyses and the thermoelastic analyses provided a decrease of the Von
Mises stresses magnitude for the former and a slight increase for the latter. The result
was explained considering that Model B has larger mechanical stiffness with respect to
the current OB, therefore providing increased structural robustness of the component and
reduced thermal compliance.

Finally, both Model A and B highlighted negligible thermal deformations for the inves-
tigated case study, showing that the proposed designs are not sensible to the temperature
environment foreseen by the mission.

Indeed, among the proposed designs, both providing interesting improvements with
respect to the current configuration, Model A was considered the most promising one
for MicroMED mechanical hardware future development and was selected for further
experimental investigation.
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4. Experimental Assessment

As mentioned before, mass minimization plays a key role in aerospace components
design. In this light, among the proposals probed within this research work, Model
A was considered the most promising one for MicroMED mechanical hardware future
development. Despite the optimal OB robustness being positively proven numerically
via FEAs, for completing the circle an experimental activity to further freeze the adopted
workflow was carried out. Indeed, a mockup of the Model A was manufactured by
milling from an Al7075-T6 slab (Figure 16) and was tested to measure the free natural
frequencies. Before the experimental testing activities, a dimensional and geometrical check
was performed to state the actual mockup footprint, to update the FEM.
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The mass was measured with a Gibertini balance having a resolution of 0.01 g, obtain-
ing 63.88 g. The mass mismatch with the Model A Computer-Aided Design (CAD) was
attributed to a slight difference between the real and theoretical component dimensions.
Indeed, a measure of the ribs grid and the overall OB geometrical features—carried out
with a Mitutoyo fiftieths gauge and a Micro-Epsilon laser scanner having a resolution
of 2 µm—confirmed the presence of a dimensional unevenness. The measurement out-
come is reported in Appendix A, providing a comparison between the theoretical and real
dimensions of Model A.

The activity was propaedeutic to the actual free vibrations test because it allowed
updating the Model A CAD model with the real mockup dimensions and preserving
its representativeness. This was mandatory in view of a comparison between the nu-
merical free natural frequencies (i.e., found running a free modal analysis on PTC Creo
Parametric/Simulate) with the experimental one.

Moreover, as highlighted in Figure 16 during the manufacturing process the 0.3 mm
skin was not able to withstand the milling head-cutting force and was plastically deformed
by the tool action. However, since the damage was localized to a restricted area of the
component, the mockup was considered eligible to be investigated in this experimental
activity. Indeed, its structural integrity was not compromised and the vibrating modes not
involving the damaged region were expected to be unaffected by the manufacturing defect.

Finally, before the actual resonances research experimental activity, the Model A
updated CAD was subject to a free modal analysis to estimate the free natural frequencies
and discover which vibrating modes were eligible to be observed during the resonances
research. Indeed, considering a non-contact measurement method including a Laser
Doppler Vibrometer (LDV—Polytec OFV 505 sensor head) was used for the experimental
activity, the free modal analysis was necessary to plan where to point the laser head to
properly catch the vibrating modes and measure their frequencies.



Appl. Sci. 2023, 13, 12810 13 of 18

The FEA outcomes are reported in Figure 17 and the numerical results are summarized
in Table 4. As can be seen, with only three LDV laser spot positionings (i.e., at one of the
peripheral mockup holes, at the skin between the LG and the PG, and near the component
damaged area) it was theoretically possible to catch all the investigated vibrating modes.
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Table 4. Numerical free vibrating modes summary carried out on the Model A updated CAD. In the
brackets, the numerical free vibrating modes before the update are reported.

Natural Vibrating Resonances [Hz]

f1 f2 f3 f4 f5
392 747 898 990 1159

(390) (742) (904) (991) (1168)

An overview of the adopted experimental setup is depicted in Figure 18. For the free
vibrations test, the Model A mockup was suspended on elastic ropes and excited with
a series of sweep sines (i.e., five consecutive linear sweeps lasting 30 s each, in the 80
to 5120 Hz frequency range and 200 mV peak-to-peak wide) produced by the Keysight
Technologies 33220A function generator and delivered to a loudspeaker placed below the
OB. The real input delivered at the mockup was measured with the PCB Piezotronics 130E20
ICP microphone (i.e., having a sensitivity of 48.1 mV/Pa). On the other hand, the mockup
response was measured relying on the LDV (i.e., having a sensitivity of 40 mV/(mm/s)
and a band-pass filter between 100 Hz and 10 kHz) and sampled at 10,240 Hz via the
National Instrument NI 9234 acquisition board (i.e., characterized by an input range of
±5 V and 24 bit). The LDV beam was pointed at three strategic positions within the Model
A mockup according to the free natural frequencies mode shapes identified via the free
modal analysis. Finally, the experimental free natural frequencies were estimated relying
on the Frequency Response Function (FRF) computed with the ratio between the LDV and
the microphone signals, windowing (Hanning) and averaging the acquired time histories.
Results are shown in Figure 19.
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A comparison between numerical and experimental natural frequency values is re-
ported in Table 5. As can be seen, all the investigated resonances—but the 5th—are in
line with the numerical ones, i.e., the retrieved error is smaller than 5%. The discrepancy
between the numerical and the experimental natural frequency value at the 5th vibrating
mode was explained considering observing the mode shape reported in Figure 17. Indeed,
the considered mode exclusively involved the thin skin affected by the manufacturing
damage pointed out in Figure 16. Therefore, such local weakening may have sensibly
reduced the component stiffness there and caused the natural frequency value to drop.

Nevertheless, in light of the satisfactory results with the comparison, the validation
activity to state the robustness of the redesign approach was considered positive.
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Table 5. Comparison between the numerical and the experimental natural frequency values.

Vibrating Mode Numerical [Hz] Experimental [Hz] ∆

1st 392 405 +3.32%
2nd 747 740 −1.00%
3rd 898 891 −0.74%
4th 990 986 −0.42%
5th 1159 953 −17.8%

5. Conclusions

This research work proposed the redesign of the optical bench for the MicroMED
Dust Analyzer, an OPC developed for the ESA ExoMars 2022 mission to Mars. Topology
optimization was exploited to achieve either a mass saving on the component (i.e., Model A)
or a maximization of its dynamic performance (i.e., Model B). The optimal proposals
allowed a reduction of about 55% of the mass budget of the considered design domain, or
a first natural frequency improvement of about 50% than the current optical bench design.
Both of the solutions were positively assessed via a set of FEAs (i.e., modal, quasi-static,
and thermoelastic analyses) applying the conditions identified as design constraints within
the mission framework and highlighting large safety factors about the limit stress for both
the foreseen mechanical and thermal environment. Moreover, the thermo-elastic analyses
showed that computed thermal deformation is negligible with respect to the instrument’s
measurement volume size, therefore validating the thermo-mechanical structural design.

The Model A was considered the most promising proposal for the MicroMED future
development. Indeed, applying the mass reduction to the overall instrument is foreseen
to provide the largest benefit to MicroMED. Any additional mass saving among the me-
chanical hardware would allow either the possibility of proposing a cost-competitive
instrument, or a redistribution of the gained mass elsewhere to enhance the functionalities
of the instrument. Considering the latter option, one very attractive feature would be the
possibility to quickly and easily dismount or replace the instrument components even after
the integration is completed.

Considering the attractiveness of the Model A proposal, a mockup of the optical bench
was manufactured and tested to prove the robustness of the redesign workflow as well.
An experimental setup was put in place to measure the mockup-free natural frequencies,
obtaining a good agreement with the ones predicted via a numerical free modal analysis,
i.e., a percentage error lower than 5% was found for the first four natural frequencies.

Nevertheless, both Model A and Model B proved the effectiveness of the adopted
structural optimization approach. Thus, as this research activity develops in the fu-
ture, the redesign methodology will be extended to the main mechanical components
of the instrument.
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Appendix A

The Model A was subject to a geometrical and dimensional check to state the real
footprint with respect to the FEM one. The measurements were carried out at the positions
highlighted in Figure A1. Finally, the campaign outcomes are summarized in Table A1.

Table A1. Summary of the dimensional measurements—with reference to Figure A1—carried out on
the Model A manufactured mockup.

Fiftieths Linear Gauge (RES 0.02 mm) Laser Scanner (RES 0.002 mm)

Model A footprint: 110.04 × 125.98 mm Ref. Measured [mm] Nominal [mm]

Gibertini balance (RES 0.01 g) R1 1.484 1.500

Measured mass [g] Nominal mass [g] R2 0.988 1.000
63.88 64.63 R3 1.002 1.000

Mitutoyo micrometer (RES 0.001 mm) R4 1.192 1.200

Ref. Measured [mm] Nominal [mm] R5 1.940 2.000
S1 0.289 0.300 R6 0.984 1.000
S2 0.283 0.300 R7 1.466 1.500
S3 0.282 0.300 R8 1.480 1.500
S4 0.284 0.300 R9 1.464 1.500

S5 0.287 0.300 Fiftieths linear gauge (RES 0.02 mm)

S6 0.288 0.300 Ref. Measured [mm] Nominal [mm]
S7 0.289 0.300 T1 5.00 5.00
S8 0.283 0.300 T2 2.44 2.50
S9 0.282 0.300 T3 2.44 2.50
S10 0.284 0.300 T4 3.50 3.50
H1 0.287 5.000 T5 7.00 7.00
H2 0.288 5.000 T6 3.44 3.50
H3 0.292 5.000 T7 4.94 5.00
H4 0.283 5.000 T8 1.92 2.00
H5 0.285 5.000 T9 1.94 2.00
H6 0.284 5.000 T10 6.96 7.00
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Figure A1. Overview of the measurement points positioning at the Model A mockup. The tags with
the T prefix refer to general thickness measurements; R prefix refers to rib thickness measurements;
S prefix refers to skin thickness measurements; and H refers to features height measurements.
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Appendix B

The displacements produced at the probes defined in Figure 5 are reported—for the
most critical case, i.e., the cold case—in Table A1. The numerical values for the current OB,
Model A, and Model B were estimated relying on an FEA and considering singularly the X,
Y, and Z directions.

Table A1. Summary of the thermal deformations obtained within the cold case for the three FEM of
the MicroMED OB.

Probe
ID

Displacement with Respect to the Initial Probe Coordinates

Current OB Model A Model B

X [mm] Y [mm] Z [mm] X [mm] Y [mm] Z [mm] X [mm] Y [mm] Z [mm]

023-1 0.19028 −0.06133 −0.34073 0.19263 −0.06926 −0.34490 0.18705 −0.11086 −0.34656
023-2 0.19056 −0.06134 −0.34078 0.19292 −0.06925 −0.34492 0.18733 −0.11086 −0.34659
023-3 0.19077 −0.06114 −0.34089 0.19311 −0.06905 −0.34494 0.18753 −0.11067 −0.34663
023-4 0.19078 −0.06086 −0.34100 0.19311 −0.06877 −0.34495 0.18753 −0.11039 −0.34665
023-5 0.19059 −0.06065 −0.34103 0.19290 −0.06857 −0.34494 0.18734 −0.11019 −0.34664
023-6 0.19030 −0.06064 −0.34098 0.19262 −0.06858 −0.34492 0.18706 −0.11019 −0.34661
023-7 0.19009 −0.06083 −0.34086 0.19242 −0.06878 −0.34490 0.18686 −0.11038 −0.34657
023-8 0.19008 −0.06112 −0.34076 0.19243 −0.06906 −0.34489 0.18686 −0.11066 −0.34655
026-1 0.19168 −0.06069 −0.34280 0.19463 −0.06844 −0.34713 0.18922 −0.11004 −0.34864
026-2 0.19149 −0.06045 −0.34282 0.19443 −0.06822 −0.34713 0.18904 −0.10981 −0.34863
026-3 0.19152 −0.06016 −0.34291 0.19445 −0.06792 −0.34714 0.18906 −0.10952 −0.34865
026-4 0.19176 −0.05997 −0.34300 0.19467 −0.06773 −0.34715 0.18929 −0.10933 −0.34867
026-5 0.19205 −0.06000 −0.34304 0.19496 −0.06774 −0.34716 0.18959 −0.10936 −0.34869
026-6 0.19224 −0.06023 −0.34302 0.19516 −0.06797 −0.34716 0.18977 −0.10959 −0.34870
026-7 0.19221 −0.06053 −0.34293 0.19514 −0.06826 −0.34716 0.18974 −0.10988 −0.34868
026-8 0.19198 −0.06072 −0.34284 0.19492 −0.06846 −0.34715 0.18952 −0.11007 −0.34866
11B-1 0.17442 −0.05467 −0.33993 0.17718 −0.06385 −0.34491 0.17205 −0.10487 −0.34594
11B-2 0.17477 −0.05345 −0.33846 0.17747 −0.06320 −0.34318 0.17239 −0.10417 −0.34427
11B-3 0.17562 −0.05153 −0.33828 0.17823 −0.06149 −0.34241 0.17322 −0.10248 −0.34358
11B-4 0.17644 −0.05008 −0.33949 0.17899 −0.05978 −0.34306 0.17402 −0.10083 −0.34427
11B-5 0.17678 −0.04990 −0.34139 0.17933 −0.05902 −0.34475 0.17436 −0.10015 −0.34595
11B-6 0.17643 −0.05112 −0.34286 0.17904 −0.05967 −0.34648 0.17401 −0.10085 −0.34761
11B-7 0.17558 −0.05304 −0.34304 0.17829 −0.06138 −0.34725 0.17318 −0.10254 −0.34830
11B-8 0.17476 −0.05449 −0.34183 0.17753 −0.06309 −0.34660 0.17238 −0.10419 −0.34761
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