Masonry arch bridges are an integral part of the European transportation infrastructure. Regular inspections are critical to ensure the safe operation of these bridges and also to preserve historical heritage. Despite recent advancements in assessment techniques, monitoring masonry arch bridges remains a difficult and important research topic. This paper describes a proof-of-concept study carried out on a masonry arch rail bridge in Gavirate, Italy, to investigate the dynamic responses of the bridge to train-induced moving loads. The dynamic measurements are obtained by a distributed fiber optic sensing system that enables a novel inspection of the integrity of masonry arch bridges. The focus of this field study is to quantify the dynamic strain induced by train moving loads and reveal the masonry arch bridge's dynamic behaviors through the use of an innovative distributed fiber optical sensing-based technique. The results may provide a useful guideline for the application of distributed fiber optical sensing to monitoring masonry arch bridges.

Dynamic monitoring of a masonry arch rail bridge using a distributed fiber optic sensing system

Cheng L.;Cigada A.;Zappa E.;
2024-01-01

Abstract

Masonry arch bridges are an integral part of the European transportation infrastructure. Regular inspections are critical to ensure the safe operation of these bridges and also to preserve historical heritage. Despite recent advancements in assessment techniques, monitoring masonry arch bridges remains a difficult and important research topic. This paper describes a proof-of-concept study carried out on a masonry arch rail bridge in Gavirate, Italy, to investigate the dynamic responses of the bridge to train-induced moving loads. The dynamic measurements are obtained by a distributed fiber optic sensing system that enables a novel inspection of the integrity of masonry arch bridges. The focus of this field study is to quantify the dynamic strain induced by train moving loads and reveal the masonry arch bridge's dynamic behaviors through the use of an innovative distributed fiber optical sensing-based technique. The results may provide a useful guideline for the application of distributed fiber optical sensing to monitoring masonry arch bridges.
2024
Masonry railway bridge, Distributed fiber optics, Strain measurement, Dynamic measurement, Structural health monitoring
File in questo prodotto:
File Dimensione Formato  
AAA_Final_s13349-024-00774-0.pdf

Accesso riservato

Descrizione: Paper
: Publisher’s version
Dimensione 4.33 MB
Formato Adobe PDF
4.33 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1262991
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact