One of the main concerns of cloud-based services based on machine and deep learning algorithms is the privacy of users’ data. This is particularly relevant when companies want to leverage such services because they have to outsource potentially sensible data to be processed. In this work, the problem of privacy-preserving anomaly detection on industrial vibrational data with machine learning is tackled. It consists in the detection of irregularities or deviations from expected patterns in the vibration signals generated by industrial machinery and equipment. Such anomalies can be indicative of potential equipment failures, maintenance needs, or process deviations, making their timely detection critical for ensuring the smooth operation and reliability of industrial systems. We combine this industrial need with the ability to guarantee data privacy by proposing encrypted vibrational anomaly detection (EVAD). EVAD allows the detection of anomalies on vibrational data in a privacy-preserving manner by integrating, for the first time in the literature, one-class support vector machines and homomorphic encryption, the latter being a particular kind of encryption that allows the computation of some operations directly on encrypted data. Experimental results show that, on two publicly available datasets for vibrational anomaly detection, EVAD is able to distinguish, in a privacy-preserving manner, between nominal and anomaly situations, in an effective and efficient way. To the best of our knowledge, EVAD represents the first privacy-preserving solution for the detection of anomalies in vibrational data present in the literature.

EVAD: encrypted vibrational anomaly detection with homomorphic encryption

Falcetta, Alessandro;Roveri, Manuel
2024-01-01

Abstract

One of the main concerns of cloud-based services based on machine and deep learning algorithms is the privacy of users’ data. This is particularly relevant when companies want to leverage such services because they have to outsource potentially sensible data to be processed. In this work, the problem of privacy-preserving anomaly detection on industrial vibrational data with machine learning is tackled. It consists in the detection of irregularities or deviations from expected patterns in the vibration signals generated by industrial machinery and equipment. Such anomalies can be indicative of potential equipment failures, maintenance needs, or process deviations, making their timely detection critical for ensuring the smooth operation and reliability of industrial systems. We combine this industrial need with the ability to guarantee data privacy by proposing encrypted vibrational anomaly detection (EVAD). EVAD allows the detection of anomalies on vibrational data in a privacy-preserving manner by integrating, for the first time in the literature, one-class support vector machines and homomorphic encryption, the latter being a particular kind of encryption that allows the computation of some operations directly on encrypted data. Experimental results show that, on two publicly available datasets for vibrational anomaly detection, EVAD is able to distinguish, in a privacy-preserving manner, between nominal and anomaly situations, in an effective and efficient way. To the best of our knowledge, EVAD represents the first privacy-preserving solution for the detection of anomalies in vibrational data present in the literature.
2024
File in questo prodotto:
File Dimensione Formato  
EVAD_last_submission.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 1.32 MB
Formato Adobe PDF
1.32 MB Adobe PDF Visualizza/Apri
s00521-024-09464-w.pdf

Accesso riservato

: Publisher’s version
Dimensione 412.22 kB
Formato Adobe PDF
412.22 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1262917
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact