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Abstract
One of the main concerns of cloud-based services based on machine and deep learning algorithms is the privacy
of users’ data. This is particularly relevant when companies want to leverage such services because they have
to outsource potentially sensible data to be processed. In this work, the problem of privacy-preserving anomaly
detection on industrial vibrational data with machine learning is tackled. It consists in the detection of irregulari-
ties or deviations from expected patterns in the vibration signals generated by industrial machinery and equipment.
Such anomalies can be indicative of potential equipment failures, maintenance needs, or process deviations,
making their timely detection critical for ensuring the smooth operation and reliability of industrial systems.
We combine this industrial need with the ability to guarantee data privacy by proposing Encrypted Vibrational
Anomaly Detection (EVAD). EVAD allows the detection of anomalies on vibrational data in a privacy-preserving
manner by integrating, for the first time in the literature, One-Class Support Vector Machines (OCSVM) and
Homomorphic Encryption (HE), the latter being a particular kind of encryption that allows the computation of
some operations directly on encrypted data. Experimental results show that, on two publicly available datasets
for vibrational anomaly detection, EVAD is able to distinguish, in a privacy-preserving manner, between nominal
and anomaly situations, in an effective and efficient way. To the best of our knowledge, EVAD represents the first
privacy-preserving solution for the detection of anomalies in vibrational data present in the literature.
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1 Introduction
The rise of privacy-preserving Machine Learning
(ML) and Deep Learning (DL) has opened a new
era of computing solutions able to provide services
based on ML and DL, meanwhile guaranteeing the pri-
vacy of users’ data. In this perspective, being able to
guarantee the privacy of people [27, 39] or industrial
entities [6, 29] during the processing of data is one
of the most promising and challenging research fields
from the technical and ethical point of view [20]. The
privacy-preserving processing of data is particularly

relevant for industries and companies, since they are
driven by concerns regarding competitive disadvan-
tage or potential data breaches, hence refraining from
employing cloud-based ML/DL solutions. This con-
stitutes an entry barrier that hinders these companies
from harnessing value from their own data [48].

Anomaly detection is an important technique for
recognizing unusual patterns in data that do not con-
form to an expected behavior. Anomaly detection can
be applied in a variety of domains [41] such as fraud
detection [2], medical diagnosis [21], and fault detec-
tion [17]. Of particular interest for many industrial
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entities is the task of anomaly detection on vibra-
tional data (e.g., data coming from sensors installed
on industrial machinery). One of the main advantages
of applying anomaly detection in this field is that it
enables predictive maintenance, which is known to
reduce operating costs and improve the reliability of
machinery [55]. The literature about anomaly detec-
tion on vibrational data is wide, and several works are
available, e.g., [40, 53]. None of these works addresses
the problem of privacy in anomaly detection.

In the field of privacy-preserving computation,
among the various technologies available able to guar-
antee the privacy of users [11], Homomorphic Encryp-
tion (HE) [18] is receiving increasing attention from
both the academic and industrial sectors [31]. By
leveraging HE schemes, solutions based on ML and
DL can execute operations on encrypted data without
the need to decrypt them and ensuring the accuracy of
the results. In other words, HE protects the data not
only at rest and in transit [52], but also during the pro-
cessing [13]. This is particularly useful in application
scenarios such as Cloud-based services where data
are provided by users to the Cloud for the processing
in an as-a-service manner. However, HE introduces
two main limitations: (i) the operations on encrypted
data are characterized by a severe computational over-
head with respect to the same operations performed
on plain data, requiring 50x-100x more computational
time and memory [15]; (ii) only some operations are
permitted on encrypted data (i.e., the majority of HE
schemes allow only additions and multiplications).
This point can explain why the literature on privacy-
preserving ML and DL solutions implementing HE is
still limited (being ML and DL solutions character-
ized by a long sequence of non linear operations). The
few existing solutions present in the literature mainly
focus on privacy-preserving image and text classifi-
cation [18], while HE is expected, in the next years,
to become viable for many different real-world use
cases [25].

The goal of this paper is to introduce Encrypted
Vibrational Anomaly Detection (EVAD). EVAD is a
solution able to detect anomalies on users’ vibrational
signals meanwhile respecting their privacy. This is
done by leveraging HE and One-Class Support Vector
Machines (OCSVM) [12, 46], which are an evolution
of Support Vector Machines (SVM) [16], specifically
designed for the task of anomaly detection. To the best
of our knowledge, EVAD represents the first privacy-
preserving solution for the detection of anomalies in

vibrational data present in the literature. The innova-
tive contributions of this study are:

1. The introduction of the EVAD pipeline, a privacy-
by-design pipeline for vibrational anomaly detec-
tion. EVAD is designed to be deployed in an
as-a-service manner;

2. The re-design of conventional algorithms for
anomaly detection, to make it possible to pro-
cess encrypted data. This involves both the data
pre-processing part (i.e., the DFT transformation,
which is done on encrypted inputs) and the infer-
ence of the model (i.e., the aggregation of the
intermediate encrypted representations in a sin-
gle vector and the inference algorithm of the
OCSVM);

3. The use of both HE optimization techniques and a
feature reduction mechanism, to reduce the compu-
tational demand of EVAD. This is done to comply
with the requirements of an as-a-service solution.

All the codes used in this paper are released to the
scientific community as a public repository.1

The paper is organized as follows. Section 2
describes the related literature and Section 3 describes
the background on HE and OCSVMs. Section 4
introduces the proposed EVAD solution. Lastly, the
experimental results are given in Section 5, and the
conclusions are finally drawn in Section 6.

2 Related literature
The literature in the field of privacy-preserving ML
and DL focuses in particular on the processing of
images, for which it presents various examples of
privacy-preserving solutions, leveraging in particular
Convolutional Neural Networks [34] (CNNs). One of
the first works in this field is [23], which introduced
a 5-layer CNN able to make image classification on
an encrypted dataset. Another example is [35], which
introduced various optimizations in order to imple-
ment the ResNet-110 [26] CNN on encrypted images.

Other examples of application of privacy-
preserving solutions with HE are natural language
processing (e.g., [14, 54]), genomic data processing
(e.g., [33]), and time-series forecasting (e.g., [19]).

Moving to the anomaly detection task considered
in this study, very few works are available in the lit-
erature. In [4], the authors proposed a solution for

1The code is attached to this submission, and will be made publicly
available in the final version of the paper.
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the detection of anomalies in data coming from envi-
ronmental sensors (e.g., temperature, humidity, etc.).
However, the employed HE scheme does not fol-
low the more recent standards in terms of security,
and the procedure requires the active collaboration
of the client to perform some intermediate computa-
tions. This is a limitation present also in [7], where
the authors presented a control and anomaly detection
pipeline for industrial plants. In this work, the detec-
tion of anomalies is performed by computing a suit-
ably defined statistic called nonparametric cumulative
sum (CUSUM).

On the contrary, [5] proposed a solution based
on a distributed version of the fuzzy c-means clus-
tering algorithm (FCM) on encrypted data, applied
on environmental data. Nonetheless, the implemen-
tation of a custom mechanism to process floating
point values results in a very high computational cost,
requiring a massive parallelization over 100 compu-
tational units to perform a single inference task in a
reasonable amount of time. Differently, SigML [51]
proposed a mechanism for supervised log anomaly
detection, where a device sends encrypted logs to
a third party, and logistic regression is used as ML
model. The result is sent back to the device, where it
will be decrypted. SigML leverages the same encryp-
tion scheme used in this work, i.e., the Cheon-Kim-
Kim-Song (CKKS) scheme, which will be detailed in
Section 3. Another example of anomaly detection on
encrypted data is given in [49], where a method for
encrypted intrusion detection is proposed. A client can
send encrypted raw data (such as metrics), and obtain
an encrypted alert that can be decrypted and triggered
if an intrusion is detected. While potentially of inter-
est, the mechanisms used for anomaly detection in
this case are specific to the application scenario of
intrusion detection.

For what concerns the use of the SVM mod-
els family, three works deserve attention. In [42] the
authors proposed a method which supports fair learn-
ing of SVMs on encrypted data, using HE. In particu-
lar, they aimed to protect the privacy of some sensitive
variables that could be present in datasets contain-
ing personal information (e.g., income). Moreover, a
regulator, which is another third-party which medi-
ates the processing between the client and the entity
which trains the model, has to be involved. Another
work which uses SVM combined with HE is intro-
duced in [28], in which a privacy-preserving scheme
for image classification is provided. In that case, the
feature extraction part (which could be compared with

the first steps of the EVAD pipeline, see Section 4.1)
is done on the client, before the encryption. Lastly, [3]
proposed a SVM algorithm on encrypted data for the
classification of Bitcoin transactions. This work shares
many similarities with the paper at hand, includ-
ing the use of the CKKS scheme. The differences
lay in the considered task (i.e., classification versus
anomaly detection) and in the learning approach (i.e.,
supervised versus unsupervised). Moreover, the pre-
processing phase introduced in Section 4 allows us
to process signals which require an analysis in the
frequency domain.

3 Background

3.1 Homomorphic encryption
HE is a family of encryption schemes that support
the computation of some operations directly over
encrypted data [1]. In particular, an encryption scheme
with an encryption function E(·) and decryption func-
tion D(·) is considered homomorphic with respect to
a class of functions F if, for any f ∈ F , a function g
can be constructed such that

f (x) = D(g(E(x)))

where x is any set of possible inputs [10]. Among
the available HE schemes, in this study we opted
for the CKKS scheme [15], which is based on the
Ring Learning With Errors (RLWE) problem [37].
The CKKS scheme is an approximate scheme, in the
sense that it supports two operations (i.e., additions
and multiplications) on encrypted real values, with
a certain precision. Indeed, HE schemes inject noise
into ciphertexts to guarantee the probabilistic encryp-
tion properties [24], and this has two consequences:
first, every time an operation is performed on a CKKS
ciphertext, the amount of noise in that ciphertexts
increases. This will lead to a bigger rounding error
when it is decrypted. Second, a limited number of con-
secutive multiplications on a CKKS ciphertext can be
done before it gets corrupted. This number is often
called level of the scheme, and is indicated with l. The
scheme can be configured through a set of encryption
parameters Θ = [N, q,∆], where N is a power of 2 and
it is called polynomial modulus, q = [q0, . . . , qL+1] is
the list of l+2 prime numbers, which are the coefficient
modulus, and ∆ is a power of 2 that is the precision
factor. Θ defines the algebraic structure of the plain-
texts and ciphertexts. In particular, plaintexts are in the
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polynomial ring R = Z[X]/(XN +1), while ciphertexts
are in the polynomial ring Rq = Zq0 [X]/(XN+1). Each
time a ciphertext is multiplied with another ciphertext
or a plaintext, the ciphertext coefficient modulus is
switched to the next one in the list q (e.g., a ciphertext
having coefficient modulus q0 will have coefficient
modulus q1 after a multiplication). This can be done
up to using qL, after which no more multiplications
are permitted. ∆ is the precision of the encoding of
freshly encrypted real numbers. There are three key
elements that should be considered when dealing with
the CKKS scheme.

The first is the encryption parameters choice. In
particular, the choice of Θ affects the level of the
scheme l, the computational overhead of the opera-
tions with respect to the same ones applied on plain-
texts, and the security level. For these reasons, it is
suggested to rely on state-of-the-art software libraries,
which provide helper functions to tune Θ. In particu-
lar, in this work the SEAL library [47] is used, through
the Python wrapper TenSEAL [8]. SEAL requires the
user to specify l and b, which is the list of bit-lengths
of the numbers in q. From these values, a suitable
value for N is selected. Moreover, SEAL will securely
compute the actual values for the coefficient mod-
ulus q, which will have the bit-lengths specified in
b. More in detail, a possible choice for b is b =
[60, b1, . . . , bL, 60], where b1 and bL should be equal
to the exponent of the desired precision factor ∆. As
an example, if the desired precision factor is ∆ = 250,
and l = 3 multiplications have to be done on a cipher-
text, a possible choice for b is b = [60, 50, 50, 50, 60].
The sum of the values in b defines the minimum pos-
sible available value for N, given that the choice of
N defines an upper limit on this sum to maintain the
scheme secure. It is suggested to use the smallest
possible N, because increasing N increases the dimen-
sion of both plaintexts and ciphertexts, which results
in heavier operations. Such thresholds are defined to
guarantee the security of the scheme.

The second one is the concept of batching. To
encrypt real values, it is first necessary to encode
them into proper polynomial plaintexts. The CKKS
scheme provides a mechanism to encode a vec-
tor z ∈ CN/2 of size N/2 into a polynomial
m(X) ∈ R = Z[X]/(XN + 1) by using a variant of the
complex canonical embedding map ϕ : CN/2 →

R [38]. By using this encoding technique, a single
plaintext (or, equivalently, a single ciphertext) can
store up to N/2 complex values. The practice of stor-
ing multiple values into a single plaintext or ciphertext

is defined batching [50]. Batching enables the applica-
tion of parallel processing through Single Instruction,
Multiple Data (SIMD) operations [22]. This greatly
reduces the computational burden of HE, both for the
times and memory required for the operations.

The third one concerns the use of relinearization
keys and Galois keys, two kinds of additional pub-
lic keys. The relinearization key is needed to perform
the relinearization operation, which is needed after
a multiplication. Indeed, in CKKS a multiplication
between two ciphertexts drastically increases the size
of the resulting ciphertext. The relinearization opera-
tion allows to fix this problem by transforming back
the ciphertext to its normal dimension. The Galois
keys are needed to perform the rotation operation on
batched ciphertexts. The rotation operation is needed
to perform the dot-product between ciphertexts and
plaintexts, as well as to perform the vector-matrix
multiplications. These keys should be generated by the
same entity which generates the public and secret keys
pair, and should be outsourced to a third-party if the
relinearization and rotation operations need to be com-
puted by them. We stress that sharing these keys does
not allow the third-party to decrypt ciphertexts in any
case.

The CKKS scheme supports a number of opera-
tions on encrypted vectors. Let â = [̂a0, â1, . . . , ân]
and b̂ = [̂b0, b̂1, . . . , b̂n] be two encrypted CKKS
vectors. The first type of operation natively avail-
able in CKKS is the element-wise addition between
encrypted vectors:

â + b̂ = [̂a0 + b̂0, â1 + b̂1, . . . , ân + b̂n]. (1)

The second type of operation is the element-wise
multiplications between encrypted vectors:

â̂b = [̂a0b̂0, â1b̂1, . . . , ânb̂n]. (2)

While not being natively available in the CKKS
scheme, two more operations used in this work can be
implemented on top of other operations provided by
the scheme: the dot-product between encrypted vec-
tors and the matrix-matrix multiplication. The first is
defined as:

â · b̂ = â0b̂0 + â1b̂1 + . . . + ânb̂n. (3)
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While the latter is defined as follows:
â11 â12 · · · â1n

â21 â22 · · · â2n
...
...
. . .

...
âm1 âm2 · · · âmn



b̂11 b̂12 · · · b̂1p

b̂21 b̂22 · · · b̂2p
...
...
. . .
...

b̂n1 b̂n2 · · · b̂np

 =

ĉ11 ĉ12 · · · ĉ1p

ĉ21 ĉ22 · · · ĉ2p
...
...
. . .

...
ĉm1 ĉm2 · · · ĉmp


(4)

where:

ĉi j = âi1b̂1 j + âi2b2 j + · · · + âin + b̂n j =

n∑
k=1

âikb̂k j.

These operations will be used in the encrypted pro-
cessing of EVAD. Their implementation is beyond the
scope of this work, and more details can be found
in [8].

3.2 One-Class Support Vector Machines
The One-Class Support Vector Machine (OCSVM)
algorithm [12, 46] is an adaptation of the Support
Vector Machine (SVM) algorithm, modified for the
case of one-class classification. Unlike traditional
classification problems, where the goal is to distin-
guish between two or more classes, OCSVM focuses
on identifying instances being outliers or anomalies
within a given dataset. This approach is particularly
valuable in situations where the majority of the train-
ing data belong to a known class, and the objective is
to uncover rare and unexpected instances.

OCSVMs, similarly to the SVM models family,
leverage the concept of finding an optimal hyperplane
to separate data points in a high-dimensional feature
space. In the context of one-class classification, the
primary goal is to define a boundary that encapsulates
the normal data points while maximizing the margin
between this boundary and the data. Instances falling
outside this margin are considered anomalies.

An important hyperparameter used in the training
of OCSVM is the parameter ν. This parameter con-
trols the proportion of outliers the model is allowed
to classify as nominal. In other words, ν defines the
upper bound on the fraction of training data that can
be considered as misclassifications or outliers. In the
next Section the proposed solution will be introduced.

4 The proposed solution
Let X ∈ RM×L be a collection of M signals of length L
(e.g., M is the number of axes in a vibrational dataset).

The goal of the anomaly detection service proposed
in this work is to compute y = fθ(X), where y ∈ R
is a real value indicating if X is nominal (i.e., its fre-
quency spectrum is compatible with the one of the data
the model fθ(·) was trained on, and y will be positive)
or anomalous (i.e., its frequency spectrum data can-
not be considered compatible with the one of the data
the model fθ(·) was trained on, and y will be negative).
We emphasize that the model fθ(·) is trained only on
nominal data, i.e., data not containing any anomaly.

Fig. 1: The architecture of the proposed EVAD.

The peculiarity of the proposed EVAD solution
is to provide such an anomaly detection service
on encrypted data, hence respecting the privacy of
clients’ data.

An overview of the proposed EVAD solution
is given in Fig. 1. The collection of signals X =

[x1, . . . , xM] is encrypted with an encryption function
E(·) and a public key on the client device, obtaining
X̂ = [x̂1, . . . , x̂M]. X̂ is then sent to the third-party
service, operating on the Cloud. Then, a pipeline of
privacy-preserving transformations is applied to the
encrypted data. This allows the third-party to pro-
cess the client’s signals X̂ in a privacy-preserving way,
guaranteeing that both the data and the intermediate
results remain encrypted during all the steps of the
pipeline. The pipeline, detailed in Fig. 2, is organized
into the following steps: Encrypted Discrete Fourier
Transformation (DFT) (detailed in Section 4.1),
Encrypted Windowing (detailed in Section 4.2), and
the final Encrypted OCSVM inference computation
(detailed in Section 4.3). The result of the Encrypted
OCSVM inference ŷ is still encrypted, and it is finally
sent back to the client, where it will be decrypted by
using the decryption function D(·) and the secret key,
obtaining y.

The EVAD pipeline relies on three key elements.
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Fig. 2: The encrypted anomaly detection pipeline of the proposed EVAD.

First, the use of the CKKS HE encryption scheme.
We opted for this scheme because it can encrypt and
natively process real numbers (in particular, it sup-
ports the encryption of values in C). Moreover, as
anticipated in Section 3, it supports the batching tech-
nique, consisting in encoding a vector z ∈ CN/2 of size
N/2 into a polynomial m(X) ∈ R = Z[X]/(XN + 1). By
operating on this polynomial, we can effectively apply
the same operation to each of the N/2 slots of the
ciphertext simultaneously. This greatly reduces both
the computational time requested for the processing of
encrypted data and the size of the ciphertexts, which
is a crucial ability when the encrypted data have to be
moved from the client to the third-party. We stress that,
as shown in Section 3, the encrypted pipeline needs a
set-up phase in which the relinearization and Galois
keys are transferred from the client (where the secret
and public keys are generated) to the third-party.

Second, the use of OCSVM models. OCSVMs,
as anticipated in Section 3.2, are unsupervised ML
algorithms for binary classification, commonly used in
anomaly detection applications. This is mainly due to
their main advantage with respect to supervised learn-
ing algorithms, since only data belonging to one class
are required for their training. Then, the trained model
will be able to distinguish between the data belonging
to that class and the data belonging to any other class.
They have been chosen in this work because the dis-
tance function used for their inference requires only
linear operations, hence making it particularly suited
to be used in the HE processing of the EVAD pipeline.
In this work, the OCSVMs are first trained on plain
data, and then used for inference on encrypted data.

Third, the use of a windowing procedure. As
shown in Section 4.1, the proposed solution is based
on the analysis of the frequency spectrum of the input
signals. This requires the computation of the DFT,
which is typically highly dimensional, and therefore
cannot be used directly as input in a OCSVM. This
constitutes a problem from both the computational and

algorithmical point of view. The windowing procedure
is an effective solution to this issue because it takes
the average of all values within a given window, thus
reducing the dimension of the inputs to the OCSVM.

We emphasize that in the first two phases (i.e.,
Encrypted DFT and Encrypted Windowing), each vec-
tor x̂m, m = 1 . . .M, is processed independently. This
means that these two steps of the pipeline can be
applied to each vector x̂m in parallel, given that the
computation on x̂m does not depend on the results of
the computation on x̂m′ , m′ , m. The outcomes of the
Encrypted Windowing are then aggregated before the
Encrypted OCSVM phase.

4.1 Encrypted DFT
The first step consists in the encrypted processing of
the DFT of each encrypted vector x̂m.

Given the symmetry of the DFT transformation,
only its right part is computed. Hence, the length of
the DFT transformation is LF =

L
2 + 1 if L is even,

or LF =
L+1

2 if it is odd, where L is the length of x̂m.
The DFT consists in the computation of LF values in
C, out of which the absolute value is taken. In general,
the absolute value of a complex value z = a + bi is:

|z| =
√

a2 + b2.

Unfortunately, the square root operation is not permit-
ted on CKKS vectors, or in any of the HE schemes.
In this work, we decided not to replace the square root
operation, but to avoid its computation. We empha-
size that, as detailed in Section 5, this did not affect
the accuracy of the considered OCSVM. Moreover,
the computation of the DFT will be carried out by
first computing the real and imaginary values of
every value of the DFT, then they will be squared
and summed up with matrix multiplications. This is
allowed by the CKKS scheme since it supports the
multiplication between vectors and matrices, as shown
in Section 3.1.
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Let MDFTReal be a matrix defined as:

MDFTReal =



cos(0) cos(0) ··· cos(0)

cos(0) cos
(

2π
LF

)
··· cos

(
2π(LF−1)

LF

)
cos(0) cos

(
2π
LF

2
)
··· cos

(
2π(LF−1)

LF
2
)

...
...

...
cos(0) cos

(
2π
LF

(LF−1)
)
··· cos

(
2π(LF−1)

LF
(LF−1)

)


, (5)

and MDFTIm be a matrix defined as:

MDFTIm =



− sin(0) − sin(0) ··· − sin(0)

− sin(0) − sin
(

2π
LF

)
··· − sin

(
2π(LF−1)

LF

)
− sin(0) − sin

(
2π
LF

2
)
··· − sin

(
2π(LF−1)

LF
2
)

...
...

...
− sin(0) − sin

(
2π
LF

(LF−1)
)
··· − sin

(
2π(LF−1)

LF
(LF−1)

)


.

(6)

We can then construct MDFT as:

MDFT =
[
MDFTReal MDFTIm

]
(7)

and multiply x̂m and MDFT by using Eq. 4. The result
P̂DFTm of this multiplication will be an encrypted vec-
tor of size LF × 2 storing the real part of the DFT in
the left part, and the imaginary part of the DFT in the
right one:

P̂DFTm = x̂mMDFT (8)
= [Re0,m, . . . ,ReLF−1,m, Im0,m, . . . , ImLF−1,m].

To conclude the DFT computation, the values in
P̂DFTm are initially squared, and then each real value
is summed up with its corresponding imaginary value.
We emphasize that the square operation is allowed for
CKKS vectors since it can be implemented as a simple
vector multiplication with itself by using Eq. 2, while,
for the sum, a matrix multiplication is used as follows.
Let MRot be:

MRot =



1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...
...
...
. . .
...

0 0 0 · · · 1
1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...
...
...
. . .
...

0 0 0 · · · 1



, (9)

we can use it to sum the real and imaginary values of
P̂DFTm as:

P̂Rotm = (P̂DFTm )2MRot (10)

= [Re2
0,m + Im2

0,m, . . . ,Re2
LF−1,m + Im2

LF−1,m].

If we set fi,m = Re2
i,m + Im2

i,m, we can re-write Eq. 10
as:

P̂Rotm = [ f0,m, . . . , fLF−1,m]. (11)

4.2 Encrypted Windowing
In order to reduce the dimension of the input of the
OCSVM model, the encrypted DFT is partitioned into
windows and, for each window, the mean of its values
is computed.

The goal of the windowing phase is to transform
P̂Rotm , defined in Eq. 11, into a vector of dimension
W, where W is a tunable parameter. Such vector P̂Winm

comprises the following W elements:

P̂Winm =

∑k−1
i=0 fi,m

k
,

∑2k−1
i=k fi,m

k
, . . . ,

∑Wk−1
i=(W−1)k fi,m

k

 ,
(12)
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where k = LF
W , that are computed with a matrix

multiplication. Let MWin be a matrix defined as:

MWin =



1
k
...
1
k

0
...
0

· · ·

0
...
0

0
...
0

1
k
...
1
k

· · ·

0
...
0

...
...
. . .
...

0
...
0

0
...
0

· · ·

1
k
...
1
k



. (13)

We emphasize that MWin has the form of a diagonal
matrix of dimension W, having vectors of k 1

k values
on the main diagonal. Then, we can compute P̂Winm as:

P̂Winm = P̂Rotm MWin. (14)

We emphasize that the choice of W is problem depen-
dent. This aspect will be addressed in Section 4.5.

4.3 Encrypted OCSVM prediction
The last step of the pipeline is the encrypted OCSVM
processing. In this stage, the OCSVM model is used to
predict if the encrypted sample is nominal or anoma-
lous.

The first phase of this step is to concatenate the
outputs of the pre-processing step (Eq. 14) P̂Winm , m =
1 . . .M, applied to each axis in the input X̂. Being each
P̂Winm a CKKS vector, it is not possible to just con-
catenate them as we usually do with normal vectors.
A matrix multiplication followed by a sum of vectors
is employed to concatenate all the m CKKS vectors
P̂Winm into a single CKKS vector x̂, representing the
input of the OCSVM model.

Let ZM and OM be two matrices defined as
follows:

ZM =


0 0 · · · 0
0 0 · · · 0
...
...
. . .
...

0 0 · · · 0

 ; OM =


1 0 · · · 0
0 1 · · · 0
...
...
. . .
...

0 0 · · · 1

 . (15)

We can define m matrices MCatm , m = 1 . . .M, i.e.,
one for each axis m, which will transform each P̂Winm

into a vector P̂Catm .
MCatm is defined as the horizontal concatenation of

M ZM matrices, but having the matrix OM in the m-th
position:

MCatm =
[
ZM ZM · · · OM · · · ZM ZM

]
. (16)

Following this notation, the m pre-processed vectors
produced in the previous steps are multiplied with the
corresponding MCatm matrices as follows:

P̂Catm = P̂Rotm MCatm . (17)

Then, the input of the OCSVM is computed by sum-
ming the M P̂Catm as follows:

x̂ =
M∑

m=1

P̂Catm . (18)

We can now compute the encrypted prediction of the
model ŷ. Let θ be the set of parameters learnt during
the training process of the OCSVM. The encrypted
distance function ŷ = fθ(x̂) of the OCSVM is defined
as:

ŷ = fθ(x̂) = dc · (γ ∗ sv · x̂)d + I. (19)

In more detail, the encrypted input x̂ is initially multi-
plied with the support vectors sv, by using the CKKS
dot-product ·, shown in Eq. 3. γ is a parameter used in
the OCSVM, which is equal to:

γ =
1

D × σ2 (20)

where D is the number of features used by the
OCSVM, and σ2 is the variance of the training dataset
established during the training phase (i.e., the set of
xi, i = 1 . . . T , where T is the number of samples user
during the training process).

If we consider that the number of features used by
the OCSVM is simply the number of axes M of the
samples multiplied by the number of windows W, we
can rewrite Eq. 20 as:

γ =
1

M ×W × σ2 . (21)
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To save one multiplication, we exploit the associative
property of multiplication to first compute γ∗ sv, given
that they are plain values.

Then, we compute the power d operation, as
shown in Eq. 19, where d is the degree of the polyno-
mial kernel that is a hyperparameter of the OCSVM.
Lastly, the obtained encrypted vector is dot-multiplied
with dc, i.e., the vector of the coefficients of the sup-
port vectors. The intercept parameter I, which is a
trainable parameter, is then added to the final scalar
value. The result ŷ can be decrypted by the client to
obtain the prediction of the OCSVM.

It is noteworthy that all the operations used in the
computation of the distance function of the OCSVM
are compatible with the CKKS scheme and in particu-
lar with the batching mechanism. We stress that dc, sv,
and I are learnt on plain data, while the distance func-
tion during the inference is computed on encrypted
inputs.

4.4 Pipeline implementation
The pipeline shown in the previous sections allows a
third-party to detect anomalies in the encrypted sig-
nals coming from a client in a privacy-preserving way,
leveraging HE. Unfortunately, as shown in Section 3,
HE introduces an important computational overhead
in the computation of operations on encrypted data,
which is highly dependent on the depth of the pipeline
(i.e., the number of consecutive multiplications). We
emphasize that the pipeline could be operated by
sequentially applying the aforementioned three steps.
Nonetheless, we strongly suggest taking advantage of
the associative property of matrix multiplication. This
allows the third-party service to reduce the multiplica-
tive depth of the pipeline. In particular, the third-party
service computes this function for each input x̂m,m =
1 . . .M:

P̂Catm = (x̂mMDFT )2(MRot MWinMCatm ). (22)

This allows the pipeline to have a lower multiplica-
tive depth, given that the encrypted vector is used in
a matrix multiplication (i.e., x̂mMDFT ), then a square
operation, and then another matrix multiplication with
(MRot MWinMCatm ). This pipeline has a multiplicative
depth of l = 3, while in the case in which the associa-
tive property of matrix multiplication is not used, such
multiplicative depth would be of l = 5.

We emphasize that, for the computation of the dis-
tance function of the OCSVM (see Eq. 19), additional
2+ (d − 1) multiplications are required. This is impor-
tant for the choice of the CKKS encryption parameters
Θ, as described in Section 3.

4.5 Selection of W
In order to select the value of W (i.e., the number of
windows to split the DFT of the time-series into), the
K-Means [45] clustering method is used. This is done
for two reasons. First, during the training phase, only
nominal data is available in a classic anomaly detec-
tion task, hence it is impossible to tune the value of
W according to the accuracy of the OCSVM model
on the anomalous data. On the contrary, a clustering
approach only requires nominal data, and it provides
an initial estimation of the value of W. Second, the K-
Means algorithm can leverage the Elbow method [9],
which is a method used to estimate the optimal value
of K for the clustering.

We emphasize that the choice of W is problem
dependent. Therefore, it is impossible to propose a
general value of W, optimal for all the cases. The
Elbow method for K-Means clustering allows us to
set W for a specific dataset. Other solutions could
have considered the use of synthetic anomalies in the
training set, or, in case some real anomalous data
are available, the use of such labeled anomalies for a
classification problem.

5 Experimental results
In this section, the proposed EVAD solution is evalu-
ated to assess its effectiveness in a privacy-preserving
anomaly detection as-a-service scenario. The code is
implemented in Python 3.8. For the OCSVM train-
ing, the library scikit-learn [43] is used, while for the
CKKS HE operations the TenSEAL [8] library has
been used. The experiments have been carried out on
an Ubuntu 20.04 LTS workstation equipped with 2
Intel Xeon Gold 5318S CPUs and 384GBs of RAM.
First, in Section 5.1 the datasets used in the experi-
mental campaign are detailed. Then, in Section 5.2 the
results of the experiments are detailed and commented
on. The code to run the experiments is available in the
publicly available repository.2

2The code is attached to this submission, and will be made publicly
available in the final version of the paper.
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5.1 Considered datasets
5.1.1 Triaxial Bearing dataset

The Triaxial Bearing Vibration dataset [32] is a pub-
licly available3 dataset collecting triaxial vibration
time-series. In particular, the dataset includes time-
series collected from a triaxial accelerometer attached
to a three phase induction motor. It includes both
nominal and anomalous data, artificially induced by
introducing faults of increasing severity to the bear-
ings. The faults can be of different depth (expressed in
millimeters, or mm), with the motor operating under
different loads (expressed in Watt, or W), and with dif-
ferent orientations (i.e., inner or outer). A total of 36
classes of anomalies is provided. In our experiments
we considered one time-series of nominal data and 36
anomalous time-series, one for each of the 36 anomaly
classes. In order to obtain more data points, we split
each time-series in subsequences of length 500.

Then, the dataset is divided into training and test
sets. The training set refers to the 80% of the nom-
inal data. The test set is composed of two parts: the
nominal test set consisting in the remaining 20% of
nominal data that were not fed to the model for the
training and the anomalous test set consisting in all the
anomalous data that were introduced in the dataset.

5.1.2 CWRU Bearing dataset

The Bearing Data [36] from the Case Western Reserve
University (CWRU) is a dataset for bearing fault clas-
sification widely used in the literature of vibrational
data analysis. It consists of time-series acceleration
data collected through uniaxial sensors mounted near
to and far from the motor bearings.

For the nominal data, four time-series are pro-
vided, corresponding to the four levels of motor loads
used in the data collection, i.e., 0HP, 1HP, 2HP, and
3HP. The anomalous data has been collected by induc-
ing faults in three different positions: at the inner
raceway, at the rolling element (i.e., the ball), and
at the outer raceway. Three different fault diameters
were used, i.e., 0.007 inches, 0.014 inches, and 0.021
inches, for the four levels of motor loads. This pro-
duced 36 classes of faults. It should be noted that data
for the fault of 0.021 inches in the outer position, with
0HP of load, are not available. Both for nominal and
anomalous data we split the time-series in windows of
500 points.

3http://dx.doi.org/10.17632/fm6xzxnf36.2

Table 1: Number of time-series avail-
able for the Triaxial Bearing and CWRU
datasets, for the nominal data.

Dataset Training set Nominal test set

Triaxial Bearing 189 48

CWRU 2716 679

For the training of the OCSVM, the dataset is
divided into training and test sets. The training set
refers to the 80% of the nominal data. The test set is
composed of two parts: the nominal test set consisting
in the remaining 20% of nominal data that were not
fed to the model for the training and the anomalous
test set consisting in all the anomalous data that were
introduced in the dataset.

The details of the nominal datasets used in the
experiments are shown in Tab. 1, while the details of
the anomalous datasets are shown in Tab. 2 and Tab. 3
for the Triaxial and CWRU datasets, respectively.

Table 2: Number of time-series available in
the anomalous test set for each anomaly class
in the Triaxial Bearing dataset.

Side Inner Outer

Power 100W 200W 300W 100W 200W 300W

D
ep

th

0.7mm 286 250 227 260 260 132
0.9mm 304 274 264 281 281 245
1.1mm 272 274 294 271 303 278
1.3mm 286 266 255 265 278 255
1.5mm 262 291 267 263 251 270
1.7mm 276 275 257 272 261 274

5.2 Experiments
The goal of this experimental campaign is to train
EVAD on nominal training data and test it on the
encrypted nominal and anomalous test sets. The nom-
inal test sets include data that were not used during the
training.

5.2.1 Parameters

More in detail, the OCSVM used in this experiment
uses a polynomial kernel with degree d = 2, and a
value of ν of 5% (i.e., the percentage of training data
that is considered anomalous during the training). The
method for selecting the value of W to use, introduced
in Section 4.5, suggested using a value of W = 8 for
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Table 3: Number of time-series available in the anomalous test set for each anomaly class in the CWRU dataset.
Side Inner Ball Outer

Power 0HP 1HP 2HP 3HP 0HP 1HP 2HP 3HP 0HP 1HP 2HP 3HP

D
ep

th 0.007” 243 242 242 243 242 241 243 242 241 242 243 243
0.014” 242 242 242 242 244 243 244 242 243 242 241 241
0.021” 242 242 241 242 242 242 243 241 / 241 241 242

the Triaxial Bearing dataset and of W = 10 for the
CWRU dataset.

For what concerns the encrypted processing, the
CKKS parameters Θ were chosen to meet the secu-
rity level of 128−bits and, meanwhile, guarantee a
multiplicative depth of 6. Θ was set as follows:

Θ =

 N = 16384
b = [60, 50, 50, 50, 50, 50, 50, 60]

∆ = 250

 .
We stress that, from this settings, the SEAL library
was used to compute the actual values for the coeffi-
cient modulus list q, starting from N and b.

5.2.2 Accuracy

The model has been initially applied on the nominal
data. For what concerns the Triaxial Bearing dataset,
it obtained an accuracy of 94.7% on the training set,
and of 93.8% on the nominal test set. For the CWRU
dataset, it obtained an accuracy of 95.0% on the train-
ing set, and of 95.0% on the nominal test set. The
values, for both the datasets, are in line with the value
of ν used during the training. We stress that only nom-
inal data were used in the training. Then, the same
models have been applied on the anomalous test sets.
The results, in terms of accuracy (i.e., percentage of
anomalies found), are given in Tab. 4 and Tab. 5 for
the Triaxial Bearing and CWRU datasets, respectively.
Two main comments arise.

First, the EVAD solution is able to recognize the
anomalies in the encrypted anomalous test set. In
particular, for the Triaxial Bearing dataset, when the
anomaly is of low severity (i.e., cases with depth of
0.7mm), the accuracies are very low for the inner side
(ranging from 0.0% to 0.34%). However, when the
anomalies become more severe (i.e., cases with depth
higher than 0.7mm), the accuracy quickly reaches
100% highlighting that the OCSVM is able to identify
the anomalies in data. Similar considerations hold for
the CWRU dataset. In particular, for the Ball type of
fault, the anomalies are identified with a high accuracy
(100% for the majority of the cases). The OCSVM

Table 4: Accuracy (in %) for the detection of
anomalies by the OCSVM for each anomaly class
in the Triaxial Bearing dataset. The percentages
are reported both applying the model on plain data
(left) and encrypted data (right).

Power 100W 200W 300W

Side Inner

D
ep

th
(m

m
)

0.7 0.35% / 0.35% 0.80% / 0.80% 0.0% / 0.0%
0.9 100% / 100% 100% / 100% 100% / 100%
1.1 100% / 100% 100% / 100% 100% / 100%
1.3 100% / 100% 100% / 100% 100% / 100%
1.5 100% / 100% 100% / 100% 100% / 100%
1.7 100% / 100% 100% / 100% 100% / 100%

Side Outer

0.7 94.23% / 94.23% 51.15% / 51.15% 63.64% / 63.64%
0.9 100% / 100% 100% / 100% 100% / 100%
1.1 100% / 100% 99.34% / 99.34% 100% / 100%
1.3 100% / 100% 100% / 100% 96.47% / 96.47%
1.5 99.62% / 99.62% 100% / 100% 100% / 100%
1.7 100% / 100% 100% / 100% 100% / 100%

Table 5: Accuracy (in %) for the detection of anoma-
lies by the OCSVM for each anomaly class in the
CWRU dataset. The percentages are reported both
applying the model on plain data (left) and encrypted
data (right).

Power 0HP 1HP 2HP 3 HP

Side Inner

D
ep

th
(i

n)

0.007 0.8% / 0.8% 2.9% / 2.9% 0% / 0% 0% / 0%
0.014 100% / 100% 100% / 100% 100% / 100% 100% / 100%
0.021 76.9% / 76.9% 94.2% / 94.2% 88.8% / 88.8% 52.1% / 52.1%

Size Ball

0.007 100% / 100% 96.3% / 96.3% 100% / 100% 99.6% / 99.6%
0.014 98.0% / 98.0% 100% / 100% 100% / 100% 99.6% / 99.6%
0.021 100% / 100% 100% / 100% 100% / 100% 100% / 100%

Size Outer

0.007 100% / 100% 100% / 100% 100% / 100% 100% / 100%
0.014 100% / 100% 100% / 100% 73.9% / 73.9% 3.3% / 3.3%
0.021 NA / NA 100% / 100% 100% / 100% 100% / 100%

shows more difficulties in identifying anomalies of
low severity (e.g., for the diameter of 0.007 inches of
the inner case).
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Table 6: Computational time (mean and vari-
ance) and RAM requirements for the encrypted
inference.

Dataset Computational time (s) RAM (GB)

Triaxial bearing 7.94 ± 0.12 1.48

CWRU 12.27 ± 0.16 1.56

Second, the accuracy on the plain test set is exactly
the same as the one obtained on encrypted data. Tab. 4
and Tab. 5, for each anomaly class, report the plain
accuracy (left) and encrypted accuracy (right). The
plain accuracy is the accuracy obtained by apply-
ing EVAD on the plain inputs, in a classic anomaly
detection as-a-service modality. Instead, the encrypted
accuracy is the accuracy obtained by applying EVAD
on the encrypted inputs. The fact that the plain and
encrypted accuracies are always the same, for all the
considered classes, highlights that the CKKS scheme
is a good choice for EVAD. In detail, the accuracy
provided by the CKKS scheme is sufficiently high to
guarantee that the introduced rounding errors do not
change the outcome of the anomaly detection mecha-
nism when applied on encrypted data. This holds for
both the considered datasets.

5.2.3 Efficiency

Tab. 6 details the computational time and memory
(RAM) requested for the encrypted processing. We
can see that the processing of a single encrypted
sample with EVAD, on the machine used for the
experiments, requires about 8 seconds for the Triax-
ial Bearing dataset and of 12 seconds for the CWRU
dataset. Moreover, in Tab. 7, the size of all the enti-
ties that should be transferred from the client to the
third-party and back are shown, with the transfer time
computed using a data transfer rate of 1Gb/s. It should
be noted that the auxiliary keys (i.e., relinearization
and Galois keys) have to be transferred only once in
the set-up phase of the encrypted pipeline. As long
as the client does not change the couple of secret
and public keys, there is no need to re-transfer them.
In the considered scenario, for the Triaxial Bearing
dataset, an encrypted sample weighs 17MBs, while
for the CWRU this dimension lowers to 11 MBs. The
encrypted result weighs 0.9MBs. This is exactly the
memory overhead introduced by the CKKS scheme,
because the ciphertexts’ structure is much richer with
respect to the one of the plain values. The transfer

times for these entities may be reasonable in a sce-
nario where strict data privacy is required. Lastly, on
the third-party service, about 1.5GB of RAM are used
to process an encrypted sample. This highlights that,
as expected, HE introduces a significant overhead in
terms of computational demand.

Table 7: Size and transfer time of all the
encrypted entities involved in the processing.

Item Size (MB) Transfer time (s)

Relinearization and Galois key 349MB 2.9s
Enc. sample (Triaxial Bearing) 17MB 0.14s

Enc. sample (CWRU) 11MB 0.10s
Encrypted answer 0.9MB 0.01s

6 Conclusions
The EVAD solution for the detection of anomalies
on vibration encrypted signals proposed in this paper
provides strong privacy-preserving capabilities, while
maintaining a high level of accuracy. Nonetheless,
some limitations are present in our study.

First, some classes of anomalies (often the ones
characterizing the weakest anomalies) are often not
recognized correctly. While in the majority of classes
the accuracy is of 100%, the EVAD’s capability in rec-
ognizing the weaker anomalies is limited. Other works
(e.g., [30] for the CWRU dataset) that are not privacy-
preserving can recognize all the anomaly classes with
a 100% of accuracy.

Second, the data to train the OCSVM model on
has to be provided to the third party in clear. This is
necessary given that, for now, EVAD does not allow
the learning of a OCSVM directly on encrypted data.
This is a well known limitation in the field of privacy-
preserving DL with HE.

The next steps in the development of EVAD will
be geared toward addressing these two limitations. In
particular, to improve EVAD’s accuracy, other ML and
DL models for the task of anomaly detection will be
re-designed to satisfy the constraints imposed by HE.
This will enrich EVAD’s models repository, poten-
tially making it possible to select the more suited
model on the basis of the considered vibrational spec-
tra. Then, the last findings in training encrypted mod-
els on encrypted data will be applied to EVAD. This
capability can be game-changing in a scenario where
clients are not willing to share even nominal data to
the third party. Lastly, the application to a different
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application scenario will be considered. For instance,
the solution proposed in this study can be applied also
to the field of Acoustic Anomaly Detection (AAD)
due to the similarities between audio and vibration
spectra [44].

Data availability
The data used in this study are publicly available at
http://dx.doi.org/10.17632/fm6xzxnf36.2 and at https:
//engineering.case.edu/bearingdatacenter.
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