: We focus on the quantification of the probability of failure (PF) of an infiltration structure, of the kind that is typically employed for the implementation of low impact development strategies in urban settings. Our approach embeds various sources of uncertainty. These include (a) the mathematical models rendering key hydrological traits of the system and the ensuing model parametrization as well as (b) design variables related to the drainage structure. As such, we leverage on a rigorous multi-model Global Sensitivity Analysis framework. We consider a collection of commonly used alternative models to represent our knowledge about the conceptualization of the system functioning. Each model is characterized by a set of uncertain parameters. As an original aspect, the sensitivity metrics we consider are related to a single- and a multi-model context. The former provides information about the relative importance that model parameters conditional to the choice of a given model can have on PF. The latter yields the importance that the selection of a given model has on PF and enables one to consider at the same time all of the alternative models analyzed. We demonstrate our approach through an exemplary application focused on the preliminary design phase of infiltration structures serving a region in the northern part of Italy. Results stemming from a multi-model context suggest that the contribution arising from the adoption of a given model is key to the quantification of the degree of importance associated with each uncertain parameter.

Probabilistic assessment of failure of infiltration structures under model and parametric uncertainty

Dell’Oca, Aronne;Guadagnini, Alberto;Riva, Monica
2023-01-01

Abstract

: We focus on the quantification of the probability of failure (PF) of an infiltration structure, of the kind that is typically employed for the implementation of low impact development strategies in urban settings. Our approach embeds various sources of uncertainty. These include (a) the mathematical models rendering key hydrological traits of the system and the ensuing model parametrization as well as (b) design variables related to the drainage structure. As such, we leverage on a rigorous multi-model Global Sensitivity Analysis framework. We consider a collection of commonly used alternative models to represent our knowledge about the conceptualization of the system functioning. Each model is characterized by a set of uncertain parameters. As an original aspect, the sensitivity metrics we consider are related to a single- and a multi-model context. The former provides information about the relative importance that model parameters conditional to the choice of a given model can have on PF. The latter yields the importance that the selection of a given model has on PF and enables one to consider at the same time all of the alternative models analyzed. We demonstrate our approach through an exemplary application focused on the preliminary design phase of infiltration structures serving a region in the northern part of Italy. Results stemming from a multi-model context suggest that the contribution arising from the adoption of a given model is key to the quantification of the degree of importance associated with each uncertain parameter.
2023
Global sensitivity analysis
Infiltration structure
Multi-model context
Probability of failure
Uncertainty quantification
Groundwater
File in questo prodotto:
File Dimensione Formato  
Dell'Oca et al (JEMA - 2023).pdf

accesso aperto

Dimensione 4.59 MB
Formato Adobe PDF
4.59 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1262224
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact