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A B S T R A C T   

We focus on the quantification of the probability of failure (PF) of an infiltration structure, of the kind that is 
typically employed for the implementation of low impact development strategies in urban settings. Our approach 
embeds various sources of uncertainty. These include (a) the mathematical models rendering key hydrological 
traits of the system and the ensuing model parametrization as well as (b) design variables related to the drainage 
structure. As such, we leverage on a rigorous multi-model Global Sensitivity Analysis framework. We consider a 
collection of commonly used alternative models to represent our knowledge about the conceptualization of the 
system functioning. Each model is characterized by a set of uncertain parameters. As an original aspect, the 
sensitivity metrics we consider are related to a single- and a multi-model context. The former provides infor-
mation about the relative importance that model parameters conditional to the choice of a given model can have 
on PF. The latter yields the importance that the selection of a given model has on PF and enables one to consider 
at the same time all of the alternative models analyzed. We demonstrate our approach through an exemplary 
application focused on the preliminary design phase of infiltration structures serving a region in the northern 
part of Italy. Results stemming from a multi-model context suggest that the contribution arising from the 
adoption of a given model is key to the quantification of the degree of importance associated with each uncertain 
parameter.   

1. Introduction 

Waterlogging and/or flooding are documented to be intensified in 
recent years (e.g., Tellman et al., 2021 and references therein). This is 
mainly related to combined effects of (i) an increased degree of urban-
ization and (ii) climate changes (e.g., Semadeni-Davies et al., 2008; IPCC 
et al., 2013; Winsemius et al., 2015; Wang et al., 2018; Sohn et al., 2019; 
Xu et al., 2019a; Pour et al., 2020; Saurav et al., 2021; Cea and Costabile, 
2022). In this context, low impact development (LID) strategies relying 
on infiltration (or drainage) systems are key to alleviate ensuing eco-
nomic, health, environmental, and safety issues (e.g., Dietz, 2007; 
Todeschini et al., 2012; Qin et al., 2013; Ahiablame et al., 2013; 
Demuzere et al., 2014; Chaffin et al., 2016; Hu et al., 2017; Recanatesi 
et al., 2017; Braswell et al., 2018; Eaton, 2018; Li et al., 2019; Koc et al., 
2021; Darnthamrongkul and Monzigo, 2021; Rong et al., 2022; Pumo 
et al., 2023). 

Design and planning of LID structures is still routinely performed on 

the basis of best practice guidelines and upon relying on empirical and/ 
or semi-empirical methods (e.g., Akan, 2002; Woods-Ballard et al., 
2007; Bach et al., 2014) or optimization strategies (Baek et al., 2015; 
Ahiablame and Shakya, 2016; Wang et al., 2017; Zhu et al., 2019; 
Saadatpour et al., 2020; Gao et al., 2022; Li et al., 2022) while assuming 
a deterministic knowledge of the (surface and subsurface) system under 
investigation. Otherwise, it is broadly recognized that uncertainty is a 
critical common denominator affecting our understanding of the func-
tioning of surface and subsurface environments and their feedbacks with 
anthropogenic actions (e.g., Zeng et al., 2019; Blöschl et al., 2019 and 
references therein). Multiple sources of uncertainties are embedded in 
almost all of the main elements required for the design of an infiltration 
structure. These include, e.g., (i) the intensity-duration-frequency (IDF) 
curve, describing the link between extreme rainfall intensity, duration, 
and frequency (e.g., Coles, 2001; Yeo et al., 2021); (ii) the hydraulic and 
hydrological features of the urban catchment, and (iii) attributes of the 
subsurface environment, such as, e.g., location of groundwater free 
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surface or aquifer conductivity (e.g., Bianchi Janetti et al., 2019 and 
references therein). The latter aspect is particularly relevant in shallow 
groundwater systems (e.g., Zhang et al., 2019). 

Several studies analyze the impact of climate change on IDF curves, 
which are routinely adopted for the design infiltration infrastructures (e. 
g., Larsen et al., 2009; Wang et al., 2014; Ragno et al., 2018; Lima et al., 
2018; Hosseinzadehtalaei et al., 2020; Kourtis and Tsihrintzis, 2022). 
Albeit literature results are not always in agreement (and may vary 
depending on the climate scenario and location analyzed, on the tech-
nique implemented for space-time downscaling, as well as on the 
duration and return period of the considered event) all of them evidence 
a significant increase of extreme rainfall intensities (in some cases by 
more than 500%). In the context of urban hydrology, Sohn et al. (2019) 
review the influence of climate changes on the effectiveness of LID 
infiltration systems, suggesting that climate variability has a stronger 
impact on the reduction of the overall runoff volumes than on peak flow. 
Recently, Busker et al. (2022) highlight benefits of incorporating 
weather forecasts in the operational schedule of a blue-green roof, thus 
enhancing the efficiency of the latter to cope with extreme rainfall 
events. 

Together with the characteristics of the rainfall event(s), the rele-
vance of other elements pertaining to the description of the urban 
catchment and to the infiltration facilities has been investigated 
(Todeschini et al., 2012; Zischg et al., 2018; Mei et al., 2018; Zeng et al., 
2019; Yao et al., 2020). Impacts of climate change and increasing ur-
banization have also been considered while assessing the behavior of 
LID practices based on infiltration structures in urban catchments (e.g., 
Saurav et al., 2021). Wang et al. (2018) assess the hydrological effects 
and performance of LID facilities for four urban catchments (two in 
Singapore and two in Shezen, China) under plausible urbanization and 
climate change scenarios, finding that the impacts of urbanization are 
more severe and adverse than those of climate change. Recently, Sui and 
van de Ven (2023) investigated the impact of five LID implementations 
and three urbanization scenarios on the hydrological behavior of a 
half-urbanized catchment in San Antonio (USA). Notably, under 
extremely wet conditions, implementation of LID practices results in 
stacking of rural and urban sub-flows due to delay of the urban peak 
runoff, leading to enhanced peaks at the basin-scale. 

These sets of investigations provide valuable and critical insights on 
functioning and ensuing impacts of infiltration structures. Otherwise, 
none of the above-mentioned studies relies on formal and rigorous ele-
ments of sensitivity analysis (SA; e.g., Pianosi et al., 2016; Razavi et al., 
2021 and references therein) that would be key to assist to (a) identi-
fying the most influential model parameters whose knowledge can 
improve model predictions, (b) enhancing our knowledge on major as-
pects of the dynamics of the system under investigation, and (c) pinpoint 
model parameters with limited effect, so that these could be fixed 
without significantly affecting model outcomes of interest. In broad 
terms, SA approaches can be classified according to Local and Global 
strategies. Local Sensitivity Analysis (LSA) techniques rely on pertur-
bation of parameters (generally one at the time) around reference 
values, the ensuing SA being strongly impacted by the selected refence 
values. Otherwise, in a Global Sensitivity Analysis (GSA) context model 
parameters affected by uncertainty are typically varied (jointly) across 
their corresponding ranges of variability to then provide a quantification 
of the importance of each model parameter on the basis of indices 
characterizing the overall model output (or response surface). Thus, GSA 
is seen to yield enhanced knowledge about model functioning through a 
comprehensive characterization of the way uncertainty associated with 
each of the model parameters propagates onto a selected model output 
of interest and drives model behavior. 

LSA and GSA have been employed to assess the sensitivity of the 
hydraulic and hydrological behavior of urban catchments in the pres-
ence of infiltration structures. Jia et al. (2015) rely on a LSA to assess the 
relevance of hydrologic model parameters on the annual runoff volume 
and peak flow. Locatelli et al. (2015) analyze the performance of an 

infiltration trench upon relying on rainfall time series from Copenhagen 
(Denmark) as input and conclude that soil hydraulic conductivity is one 
of the most influential parameters for the system functioning. Song et al. 
(2018) employ LSA in a decision support system assisting the design and 
planning of LID facilities. Xu et al. (2019b) and Dell et al. (2021) 
leverage on the GSA-based Morris’ indices (Morris, 1991) to identify the 
set of influential model parameters to be then taken into account during 
the optimization phase of LID structures. Li et al. (2018) screen the 
sensitivity of three bioretention tanks upon relying on the Morris’ 
approach and find important effects of the return period of the rainfall 
event and of the type and thickness of the artificial fillers on the hy-
draulic behavior of the three facilities. Other studies (e.g., Liu et al., 
2016; Brunetti et al., 2018; Leimgruber et al., 2018) rely on a GSA 
approach grounded on the classical variance-based Sobol’ indices 
(Sobol, 1993). Brunetti et al. (2018) combine surrogate modeling with a 
mechanistic modeling approach to simulate the hydrological and hy-
draulic behavior of a LID facility in the Calabria region (Italy). Their 
results indicate that parameters associated with the unsaturated hy-
draulic conductivity of the filtering layer are the most influential 
quantities. Leimgruber et al. (2018) assess the influence of LID design 
parameters on the water balance components. Madrazo-Uribeetxebarria 
et al. (2021) explore the way some parameters of a LID strategy based on 
permeable pavements control the reduction of flow volume and peak 
values. Floch et al. (2022) employ both Morris’s and Sobol’s GSA ap-
proaches to assess the sensitivity of the implementation of LID strategies 
in an urban catchment in Norway, while considering diverse urbaniza-
tion and climate change scenarios. Hashemi and Mahjouri (2022) 
perform a variogram-based GSA (Razavi and Gupta, 2016) of three 
goodness-of-fit metrics associated with the evaluation of runoff in an 
urban watershed in Iran. Fatone et al. (2021) leverage on a SA merging 
elements of local and global SA strategies to assess the sensitivity of the 
hydrograph of an urban catchment in Poland with respect to the tem-
poral distribution and intensity of the rainfall event. 

As a complement to the studies illustrated above, we recall that GSA 
has also been employed to investigate pollution dynamics in urban 
catchments (e.g., Hong et al., 2019; Yang et al., 2021; Naves et al., 
2020). Moreover, some studies benefit from the use of SA to enhance our 
level of knowledge on hydraulic and hydrological responses of urban 
catchments (even without necessarily focusing on the impact of LID 
facilities (e.g., Ballinas-González et al., 2020; Zakizadeh et al., 2022). 

We remark that the formulations and approaches to SA described 
above are solely geared towards the evaluation of model parameters. 
Otherwise, they do not embed explicitly the impact of model uncertainty 
on target system performance metrics, which comes into play when 
limited knowledge leads to multiple plausible conceptual-mathematical 
models. As seen above, the latter source of uncertainty is typically 
tackled through scenario-based applications while mainly exploring 
parametric uncertainties within each of these. In the context of the broad 
area targeting modeling of urban watershed dynamics, it is recognized 
that the definition of the model formulation (together with its related 
parametrization) is generally affected by uncertainty. For example, 
diverse (and often competing) model formulations can be employed to 
describe the link between inflows and outflows at the catchment scale (i. 
e., watershed dynamics, see e.g., Georgakakos et al., 2004; Sikorska 
et al., 2012; Del Giudice et al., 2015; Azizian, 2018; Ravazzani et al., 
2019; Tscheikner-Gratl et al., 2019; Wang et al., 2021; Radinja et al., 
2021; Troin et al., 2022; Li et al., 2022; Saavedra et al., 2022) and/or to 
define the characteristic time behavior of a rainfall event (e.g., Courdent 
et al., 2017; Zhang et al., 2019; Tirpak et al., 2021; Lee et al., 2021; 
Saimy et al., 2022). New approaches to GSA have been recently devel-
oped to address model uncertainty within multi-model sensitivity 
analysis framework (Dai and Ye, 2015; Dai et al., 2017, 2022; Dell’Oca 
et al., 2020; Yang and Ye, 2022). Such a multi-model GSA enables one to 
jointly address uncertainty in process models as well as parametric un-
certainty within each of these. Thus, understanding the joint impact of 
all of the aforementioned sources of uncertainty (i.e., related to 
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conceptual-mathematical model formulations and associated parame-
trization) on the functioning of a LID infiltration system is critical for a 
proper and long-term effective design. 

Here, we focus on soakaways (or drainage wells, or similar infiltra-
tion devices), which are usually used in the context of small urban 
catchments (e.g., Riva et al., 2013; Roldin et al., 2013). We investigate 
how their design and the assessment of their functioning are affected by 
(i) multiple sources of uncertainty linked to the model (and related pa-
rameters) adopted to describe the rainfall event and the urban catch-
ment, as well as by (ii) key characteristics of the subsurface system and 
of the structure itself. Our specific goal is to quantify the probability of 
failure of the soakaway system (see a sketch of the type of structure we 
consider in Fig. 1). The latter is defined as the probability that hydraulic 
head within the soakaway is larger than the structure height, thus 
yielding waterlogging and/or flooding. We do so by leveraging on the 
recent multi-model GSA developed by Dell’Oca et al. (2020). Starting 
from the observation that predictions based on a single model can result 
in statistical bias and overconfidence in the outcomes (e.g., Burnham 
and Anderson, 2002; Bredehoeft, 2005; Poeter and Anderson, 2005; 
Beven, 2006; Clark et al., 2008; Whling and Vrugt, 2008; Ye et al., 
2008), these authors propose a set of indices to assess the sensitivity of 
the statistical moments of the probability density function of a perfor-
mance metric of interest with respect to imperfect knowledge of (a) the 
model formulation employed to characterize the system behavior and 
(b) the ensuing parametrization. Here, we further and significantly 
extend the work of Dell’Oca et al. (2020) to embed a rigorous quanti-
fication of the sensitivity of the probability of failure (PF) of a system 
within a multi-model context. As an additional element of novelty, we 
also perform a process-based GSA to explore and quantify the relevance 
on PF of the various processes involved in our system. We then show 
how our approach can be employed through an exemplary application 
focused on a representative case associated with the preliminary design 
phase of an infiltration structure serving a region in the northern part of 
Italy. 

The study is organized as follows. Sections 2 illustrates the modeling 
strategy in terms of the problem set-up (Section 2.1), the main theo-
retical elements associated with Global Sensitivity Analysis framed in a 
single- and a multi-model context (Section 2.2), and the target region 
together with the set of models considered (Section 2.3). Section 3 
summarizes our key results in the context of a Single- and Multi-Model 
context and Section 4 provides our major conclusions. 

2. Materials and methods 

This Section is devoted to introducing the problem set-up (Section 
2.1), including possible modeling choices we employ to depict (i) the 
rainfall event (Section 2.1.1) and watershed dynamics (Section 2.1.2) 
here considered as well as (ii) the interaction between the surface and 
the subsurface environment (Section 2.1.3). Section 2.2 describes the 
indices/metrics quantifying the sensitivity of the probability of failure of 
the structure with respect to (typically uncertain) model parameters 
within a single- and a multi-model context (Sections 2.2.1 and 2.2.2, 
respectively). Section 2.3 illustrates the study area, the collection of 
models considered and their uncertain parameters. 

2.1. Problem set-up 

2.1.1. Design rainfall event 
A key step in the design of an infiltration structure is the definition of 

the design rainfall event (i.e., the design storm). Here, we employ the 
widely used power law formulation (e.g., Gupta and Waymire, 1990; 
Burlando and Rosso, 1996) of the depth-duration-frequency curve, DDF 

hd,TR = h1 ,TR dn; with h1 ,TR = a1wTR (1)  

where hd,TR [L] is the rainfall depth associated with a rainfall event of 

assigned duration, d [T], and return period, TR [T]; n [-] is a scale co-
efficient; a1 [LT-n] is the mean value of the maximum annual rainfall 
depth, hmax, for a unit rain duration; and wTR [-] is the growing factor, 
corresponding to the value of the normalized random variable 
W = hmax/E[hmax] associated with the non-exceedance probability 
F(w = wTR ) = (TR − 1)/TR. Evaluation of wTR in Eq. (1) requires 
knowledge of the probability distribution of W. Here, we adopt the 
widely used generalized extreme value distribution, GEV (Coles, 2001; 
Yeo et al., 2021) 

F(w)= e− t(w); with t(w) =

⎧
⎪⎨

⎪⎩

(

Γ(1 + k) − k
w − 1

α

)1/k

if k ∕= 0

e
−

(

w− 1
α +γ

)

if k = 0

(2)  

where α > 0 and k > − 1 are the scale and shape parameters of the 
distribution, respectively, and γ ≈ 0.5772 is the Euler’s constant. Note 
that Eq. (2) reduces to the Gumbel distribution when k = 0. From Eq. (2) 
one obtains the values of wTR to be used in Eq. (1) as 

wTR =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 +
α
k

{

Γ(1 + k) −
(

ln
TR

TR − 1

)k
}

if k ∕= 0

1 − α
{

ln
(

ln
TR

TR − 1

)

+ γ
}

if k = 0

. (3) 

Synthetic hyetographs, describing the temporal variation of rainfall 
intensity consistent with values of hd,TR computed by Eq. (1), are typi-
cally adopted for the design of an infiltration structure. Here, we 
consider two widely used alternative models. These correspond to (i) the 
uniform, iUd,TR

(t), and (ii) the Chicago, iCd,TR
(t), hyetographs, respectively 

rendered by 

iU
d,TR

(t)=
hd,TR

d
; with 0 ≤ t ≤ d (4)  

iC
d,TR

(t)= n
hd,TR

d

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
tp − t

tp

)n− 1

if 0 ≤ t ≤ tp

(
t − tp

d − tp

)n− 1

if tp < t < d

(5) 

While the uniform hyetograph is constant across the temporal win-
dow within which it is defined, the Chicago model considers an initial 
period of growth of the rain intensity until a peak value is attained (at 
time tp [T]), which is then followed by a decrease of rain intensity. The 
peak time can be formulated as a fraction of the rain event duration, i.e., 
tp = rd, with 0 < r < 1 and usually ranging between 0.3 and 0.5 (e.g., 
Liao et al., 2021). 

2.1.2. Rainfall-runoff model 
The flowrate at the closure section of a given urban catchment, i.e., 

Qe(t) [L3T− 1], can be evaluated through the following convolution 
integral 

Qe(t)=φmS
∫t

0

id,TR (t − τ)u(τ)dτ (6)  

where S [L2] is the area encompassed by the urban catchment, φm [-] is 
the runoff coefficient, and u(τ) [T− 1] is the instantaneous unit hydro-
graph (IUH), i.e., the catchment response to a pulse-like instantaneous 
rain event. We recall that u(τ) reflects the main hydrological charac-
teristics of the watershed and several empirical models have been pro-
posed in the literature to estimate it. A common approach that has been 
seen to be adequate in small catchments (e.g., Buytaert et al., 2004) is 
based on the linear reservoir model, which is expressed through 
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u(t)= e− t/λ/λ (7)  

where λ [T] is the reservoir constant. Here, we set 

λ= 0.651/(1− n)Tc (8) 

Tc [T] being the corrivation (or concentration) time, i.e., the time 
required for the furthest water particle to reach the drainage structure. 
Note that making use of Eq. (8) in the linear reservoir model yields the 
same maximum value of Qe as the classical kinematic model when a 
uniform rain intensity is considered (details not shown). Several 
empirical (or semi-empirical) formulations have been proposed to 
evaluate Tc as a function of the basin features (e.g., Azizian, 2018; 
Ravazzani et al., 2019 and references therein). Here, consistent with the 
methodological focus of our study, we adopt the formulation of Ventura 
(1905), that is widely used for small catchment areas (<10 km2) 

Tc = 0.1272
̅̅̅̅̅̅̅
S/i

√
(9)  

where i [-] is the slope of the main drainage branch of the catchment, Tc 
is given in hours and S in km2. If Tc is negligible (with respect to the 
duration of the rain and the drainage time linked to the infiltration 
structure), then u(t) = δ(t) and Eq. (6) reduces to 

Qe(t)= Sφmid,TR (t) (10)  

2.1.3. Infiltration structure 
We focus on a scenario associated with a cylindrical drainage well of 

diameter D [L] (i.e., with bottom surface A = πD2/4) and height H [L] 
(see Fig. 1 for a sketch of the structure). Water mass balance within the 
well drives the water level inside the structure, i.e., hw(t) [L], according 
to 

A
dhw(t)

dt
=Qe(t) − Qinf (t) (11)  

where Qinf [L3T− 1] is the outlet flowrate from the soakaway. The eval-
uation of Qinf requires the solution of the three-dimensional partially 
saturated flow field (as rendered, e.g., through the Richards’ formula-
tion), describing the spatial and temporal evolution of the wetting front, 
as well as the knowledge of the properties of the underlying soil (such as 
unsaturated hydraulic conductivity and porosity). Empirical and semi- 
empirical formulations have been developed with the aim of circum-
venting the need for solving the highly non-linear Richards’ problem. A 
widely used semi-empirical formulation has been proposed by Sieker 
(1984). According to the latter Qinf is estimated as 

Qinf (t) = A’(t)
Ks

2
L + hw(t)

L + 0.5hw(t)
;

with A’(t) =
π
4
[
(D + hw(t) )2

− D2 ]
(12) 

Here, A′(t) [L2] is the effective drainage area of the structure and L is 
the distance between the bottom of the well and the groundwater table 
(see Fig. 1). Note that Eq. (12) holds under the following assumptions: (i) 
the bottom of the infiltration structure is impervious, a situation that is 
often encountered after a prolonged period of operation due to clogging 
effects (e.g., Emerson et al., 2010), (ii) L is constant, i.e., L is not 
significantly affected by the drainage, (iii) the unsaturated conductivity 
is set equal to Ks/2, Ks being the saturated hydraulic conductivity of the 
soil (e.g., Bouwer, 1969), (iv) the vertical hydraulic gradient is 
approximated by considering a characteristic length of (L + hw/2), and 
(v) the flow leaving the well through the lateral surface is conceptualized 
via a parabolic model, so that the radius of the mean lateral distance of 
the wetting front from the structure can be approximated as hw/2. 

2.2. Global Sensitivity Analysis 

2.2.1. Single-model sensitivity analysis 
Following Dell’Oca et al. (2017) and La Cecilia et al. (2020), the 

sensitivity of the probability of failure (PF) of a system described by a 
single- (conceptual/mathematical) model with respect to the i-th un-
certain model parameter (xi) is quantified through the quantity 

AMAPxi =

∫

Γxi

⃒
⃒
⃒
⃒1 −

PF|xi

PF

⃒
⃒
⃒
⃒ρxi

dxi (13)  

where PF is the unconditional probability of system failure (SF) and PF|xi 

is its counterpart conditional to a given value of parameter xi, ρxi 
being 

the probability density function (pdf) of xi defined across the support Γxi . 
In this framework, index AMAPxi quantifies sensitivity in terms of the 
variation of PF induced by the variability of parameter xi of the selected 
model. 

2.2.2. Multi-model sensitivity analysis 
Here, we ground our study on the work of Dell’Oca et al. (2020) and 

extend the metric given by Eq. (13) to encompass a multi-model context. 
We do so upon introducing an original index, termed AMAP

x
Mj
i

, quan-

tifying the effect of the i-th uncertain parameter (i.e., xMj
i ) of model Mj 

(comprised in a set of N candidate interpretive models) on the proba-
bility of system failure. Such a metric is defined as 

AMAP
x

Mj
i
=wMj

⃒
⃒
⃒PM

F − PMj
F

⃒
⃒
⃒

PM
F⏟̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅ ⏟

between− models

+wMj

∫

Γ
x
Mj
i

⃒
⃒
⃒
⃒P

Mj
F − P

F
⃒
⃒x

Mj
i

⃒
⃒
⃒
⃒

PM
F

ρ
x

Mj
i

dxMj
i

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
within− model

;

withPM
F =

∑

j=1,N
wMj P

Mj
F

(14)  

where, PM
F is the unconditional PF evaluated within a multi-model 

context, i.e., upon considering the whole set of N available models 
and their uncertain parameters; PMj

F is the value of PF conditional to 
model Mj; PF

⃒
⃒x

Mj
i 

is the value of PF conditional to parameter xMj
i and 

model Mj; wMj is the weight related to model Mj (see, e.g., Neuman, 
2003; Ye et al., 2004; Poeter and Hill, 2007; Höge et al., 2019); and ρ

x
Mj
i 

is the (marginal) pdf of parameter xMj
i defined across the support Γ

x
Mj
i

. 

Note that index AMAP
x

Mj
i 

quantifies the sensitivity of PF to the uncertain 

parameter xMj
i as the sum of (i) a between-models, and (ii) a within-model 

Fig. 1. (a) Sketch of the infiltration structure (drainage well) of diameter D and 
height H. The well bottom is at a distance L from the groundwater table. The 
water level inside the structure, hw(t), and the effective drainage area of the 
structure, A’(t), are time dependent variables. 
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contribution. The former is associated with uncertainty in the model 
formulation. The latter provides an appraisal of the variability of PF due 
to the variability of parameter xMj

i when model Mj has been selected. 
Note also that the between-models component in Eq. (14) vanishes and 
Eq. (14) reduces to Eq. (13) when only one model is included in the 
analysis. 

Relying on the index AMAP
x

Mj
i 

enables one to address questions such 

as ‘How does the probability of failure of a system of interest changes if 
we fix the value of an otherwise uncertain parameter (i.e., xMj

i ) 
appearing in model Mj?’ In this context, it is worth noting that even as 
diverse models of the collection might be associated with parameters 
with the same conceptual-physical meaning, we treat them as distinct 
quantities. 

According to Eq. (13) and Eq. (14), the single- and multi-model 
sensitivity indices are linked through 

AMAP
x

Mj
i
=

wMj

PM
F

⃒
⃒
⃒PM

F − PMj
F

⃒
⃒
⃒

⏟̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅ ⏟
between− models

+
wMj

PM
F

PMj
F AMAPxi

⏟̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅⏟
within− model

(15) 

Therefore, while (in general) AMAP
x

Mj
i

∕= AMAPxi , the multi-model 

index can be larger or smaller than its single model counterpart, 
depending on the model weight and on the ratio PMj

F /PM
F , while the 

following inequalities are always satisfied 

wMj

PMj
F

PM
F

AMAPxi < AMAP
x

Mj
i
<

wMj

PM
F

(
1+PMj

F AMAPxi

)
(16) 

This aspect will be further elucidated in Section 3. 

2.3. Study area: uncertain models and parametrization 

Solution of Eq.s (1)–(12) requires specifying the values of a set of 
parameters associated with a given model employed to depict the sys-
tem. Here we tie our analysis to the context of the preliminary design 
phase of an infiltration structure of the kind that is planned for future 
developments of urban areas in the region around the city of Lecco 
(Fig. 2), located in the Lombardia Region (northern Italy). In this 
framework, we analyze a synthetic catchment whose characteristics are 
representative of the target urban area. Doing so enables us to explore 
jointly the influence of main (uncertain) characteristics of (a) the rain 
event, (b) the catchment, and (c) the subsurface environment on the PF 

of the target structure. Table 1 lists the set of parameters pertaining to 
the characterization of the rain event, the dynamics of the urban 
catchment and the functioning of the infiltration structure. We consider 
a mixture of (i) deterministically known and (ii) uncertain model pa-
rameters. While the former correspond to parameters that are typically 
considered as readily inferable from commonly available data, the latter 
are chiefly related to intrinsic environmental variability. Values of 
deterministic quantities listed in Table 1 are related to the description of 
the rain event and are set to those that have been established and are 
typically used for the Province of Lecco (datasets included in the open- 
access portal: www.idro.arpalombardia.it). Uncertain parameters 
(highlighted with a grey background in Table 1) encompass both surface 
and subsurface hydrology aspects typical of the area considered. Finally, 
we also explore the impact of the structure design variables (D and H, 
highlighted in yellow in Table 1) on PF. In this context, each uncertain 
parameter and design variable is treated as an independent random 
quantity, associated with a uniform pdf, i.e., ρxi

= [max(xi) − min(xi)]
− 1 

(max(xi) and min(xi) correspond to the upper and lower bound of the 
range of variability of parameter xi, respectively, and are included in 
Table 1). The choice of a uniform pdf enables one to assign equal weight 
to all values of a distribution, a scenario which is common in the absence 
of prior information. Note that we employ the same parameter densities 
in the multi-model context, i.e., ρ

x
Mj
i

= ρxi
. We note that the ranges of 

values adopted to characterize the rain event as well as the surface and 
subsurface system are also typical of urban environments of the kind we 
consider and are associated with coefficients of variation of the order of 
50%. The large variability assigned to the return period (from 10 to 100 
years) has been selected on the basis of literature results and is consis-
tent with the observed increase in the frequency of extreme events and/ 
or the increase rainfall intensity for fixed TR (see Section 1). Finally, 
design variables are allowed to vary across values typically encountered 
in practical applications, consistent with the design phase we consider 
(e.g., Woods-Ballard et al., 2007). 

Regarding the set of models of interest, we analyze combinations 
stemming from (a) two formulations of the IDF curves, (i.e., the Uniform 
and the Chicago hyetographs) and (b) two formats of the IUH (i.e., the 
linear reservoir model and its counterpart corresponding to a time of 
response of the reservoir which is virtually zero). Therefore, our multi- 
model analysis encompasses a collection of four models. 

Fig. 2. Geographical location of the urban area of reference for the study, corresponding to the surroundings of the city of Lecco (Lombardia Region, northern Italy).  
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• Model Set UL: uniform hyetograph Eq. (4) and linear reservoir model 
Eq.s (6)–(9); 

• Model Set UI: uniform hyetograph Eq. (4) and reservoir character-
ized by a negligible corrivation time Eq. (10);  

• Model Set CL: Chicago hyetograph Eq. (5) and linear reservoir model 
Eq.s (6)–(9);  

• Model Set CI: Chicago hyetograph Eq. (5) and reservoir characterized 
by a negligible corrivation time Eq. (10). 

Model sets CL and UL share the same vector of uncertain model pa-
rameters and design variables, i.e., xUL = xCL =

[TR; d;φm; S; i;D;H; L;Ks]
T . Note that, since the corrivation time is 

negligible in UI and CI, neither of these models includes the parameter i 
(required for the evaluation of the corrivation time, see Eq. (9)), i.e., xUI 

= xCI = [TR; d;φm; S;D;H; L;Ks]
T . 

We solve Eq.s (6)–(12) numerically through a finite difference 
scheme. Uncertainty (or variability) about model parameters and design 
variables propagates onto the target performance metric, i.e., the water 
level in the infiltration structure (hw(t)), that can be treated as a random 
quantity. We consider the soakaway to be appropriately designed if, as a 
consequence of a rain event, hw(t) is always (i.e., at all times) smaller 
than the well height, H. Otherwise, failure of the hydraulic structure 
takes place when the water level reaches (at least once during operation) 
the height of the well. To quantify system failure (SF) we introduce a 
random indicator I defined as 

I =
{

0 if ∀t hw(t) < H
1 if ∃t| hw(t) = H (17) 

Therefore, SF is detected when I = 1 and the unconditional PF within 
a single model context, PF, coincides with the probability of I being equal 
to one, i.e., PF = P(I = 1). For completeness, Table 2 lists the most 
relevant acronyms and symbols employed in the study. 

3. Results 

In the following we illustrate the key results obtained with a single- 

and a multi-model approach. For each candidate model (i.e., for each of 
the four models considered in Section 2.3) we randomly sample each 
uncertain parameter and design variable from its associated uniform 
distribution (defined across the support listed in Table 1). We then solve 

Table 1 
List of model parameters, including values of the deterministically fixed parameters and intervals of variability of the 
uncertain model parameters (shadowed background) considered in the study. Design variables are highlighted in yel-
low. Values of quantities related to the description of the rain event correspond to those that are typically used for the 
Province of Lecco (northern Italy; see datasets included in the open-access portal: www.idro.arpalombardia.it). Values 
of model parameters correspond to surface and subsurface hydrology aspects typical of the area considered. 

Table 2 
Summary of acronyms and relevant symbols.  

Acronym/ 
Parameter 

Description 

LID Low impact development 
SA Sensitivity Analysis 
LSA Local Sensitivity Analysis 
GSA Global Sensitivity Analysis 
IDF Intensity-duration-frequency 
DDF Depth-duration-frequency 
IUH Instantaneous unit hydrograph 
UL Uniform hyetograph and linear reservoir model 
UI Uniform hyetograph and reservoir characterized by a negligible 

corrivation time 
CL Chicago hyetograph and linear reservoir model 
CI Chicago hyetograph and reservoir characterized by a negligible 

corrivation time 
PF Probability of system failure 
SF System failure 
PF Unconditional Probability of SF; single model context 
PF|xi Probability of SF conditional to a given value of parameter xi; 

single model context 
PM

F Unconditional probability of SF; multi-model context 

PMj
F 

Probability of SF conditional to model Mj ; multi-model context. 
P

F
⃒
⃒x

Mj
i 

Probability of SF conditional to parameter xMj
i and model Mj; 

multi-model context 
P

F
⃒
⃒
⃒x

(k,Mj )
i 

Probability of SF conditional to parameter xi of process Pk and 
model Mj; multi-model context 

AMAPxi Sensitivity index for the probability of system failure w.r.t. 
parameter xi; single model context 

AMAP
x

Mj
i 

Sensitivity index for the probability of system failure w.r.t. 
parameter xMj

i of model Mj; multi-model context 
AMAPPk Sensitivity index for the probability of failure w.r.t. the k-th 

system process; multi-model context  
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Eq.s (6)–(12) for the obtained (Monte Carlo, MC) parameter realizations. 
Note that, for a given parameter set, we stop our computation (i) when 
SF is detected (i.e., if I = 1) or (ii) at a time equal to 10 × max{d, λ} if no 
SF is detected (i.e., I = 0). 

When considering a single-model approach, we evaluate the (un-
conditional) probability of system failure, PF, associated with the use of 
each model on the basis of a set of 106 MC simulations. The probability 
of system failure conditional to a value of parameter xi (i.e., PF|xi in Eq. 
(13)) is evaluated by (i) setting parameter xi to a given value (we employ 
60 equally sized bins to discretize the support of each parameter); and 
then (ii) performing 105 MC realizations through random sampling of 
the remaining model parameters. 

Within a multi-model approach, we consider all models in the set to 
be characterized by equal weights (or model probability), i.e., wUL =

wUI = wCL = wCI = 0.25. This choice reflects the observation that all 
models are equally likely a priori. We then compute the unconditional 
PF (denoted as PM

F ) by making use of Eq. (14) and on the basis of 106 MC 
simulations performed for each candidate model (for a total of 4 × 106 

MC simulations). We finally evaluate the conditional PF (denoted as 
P

F
⃒
⃒x

Mj
i

) by repeating steps (i)-(ii) described above for each model. 

3.1. Single-model sensitivity analysis 

This Section focuses on the sensitivity of the probability of failure of 
the infiltration structure with respect to the uncertain model parameters 

within a single-model context. We recall that this is tantamount to 
conditioning the results on the choice of a given interpretive concep-
tual/mathematical model. 

We start by briefly analyzing the general behavior of the system 
considering each of the models detailed in Section 2.3. Fig. 3 depicts the 
temporal evolution of (a) Qe (continuous curves), Qinf (symbols), and (b) 
hw (the structure height, H, is also depicted as reference; see the hori-
zontal dashed line) considering an exemplary combination of randomly 
sampled model parameters. We note that employing a Chicago hyeto-
graph imprints a strong and sudden increase to the values associated 
with the temporal history of Qe, leading to failure of the drainage 
structure. The peak value is less pronounced for the CL than for the CI 
model set (see inset in Fig. 3a). Otherwise, SF is not observed when the 
Uniform hyetograph is adopted for the combination of model parame-
ters selected for this illustrative example. In this case, Qe stabilizes at a 
constant value that is not significantly impacted by the selected type of 
IUH. Moreover, since Qe ≈ Qinf a constant value of hw < H is attained. 

We then investigate the impact of the various uncertain model pa-
rameters and design variables listed in Table 1 on PF by inspecting the 
results depicted in Fig. 4. The latter depicts the conditional PF, PF|xi , as a 
function of each model parameter xi (intervals of variability of each 
parameter are rescaled within the unit range for ease of interpretation) 
for the (a) UL, (b) UI, (c) CL, and (d) CI model sets. The unconditional 
single-model PF (PF; horizontal black continuous lines) is also depicted 
as reference together with its unconditional multi-model counterpart 
(PM

F ; horizontal dashed grey line). A detailed analysis of the latter is 

Fig. 3. (a) Flowrate at the closure section of the urban catchment, i.e., Qe(t) (continuous curves), and outlet flowrate from the infiltration structure, i.e., Qinf(t) 
(symbols). (b) Water level inside the structure, i.e., hw(t) (continuous curves), and the structure height, i.e., H (horizontal dashed line). Results are for an examplary 
combination of random parameters. The inset highlights the peak value of Qe(t) for the CL and CI models. 
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offered in Section 3.2. 
Inspection of Fig. 4 reveals that adopting the Chicago hyetograph 

(see Fig. 4c–d) leads to (overall) higher values of PF than their coun-
terparts associated with the Uniform hyetograph (see Fig. 4a–b). This 
finding is consistent with the behaviors detected and discussed in Fig. 3. 
Selecting the Uniform hyetograph and varying the format of the IUH 
(compare Fig. 4a and b) does not lead to noticeable discrepancies in the 
values of PF or PF|xi . This result is related to the tendency of reaching 
very similar late-time values of hw for the UI and UL model sets (as also 
noted in Fig. 3 and further discussed in the following). Considering the 
Chicago hyetograph, the CL model set leads to smaller value of PF than 
its counterpart stemming from the CI model set. This result is in line with 
the reduced peak value of Qe observed in Fig. 3 for CL with respect to CI. 
We further note that employing the CL model set yields an increased 
variability of PF|xi due to parameter uncertainty and variability of design 
variables. The latter finding is consistent with the observation that the 
temporal behavior associated with (i) the rain intensity for the Chicago 
hyetograph and (ii) the catchment response for the Linear IUH tends to 
enhance the degree of variability of Qe and Qinf in response to variations 
of model parameter values. 

Analysis of Fig. 4a-b reveals that when considering the Uniform 
hyetograph (regardless of the adopted IUH, i.e. for UL, UI) PF is strongly 
influenced by the hydraulic conductivity of the soil surrounding the 
drainage well (i.e., Ks). Values of PF are particularly high (and close to 1) 
if the subsurface is characterized by a low-permeable medium and tend 
to vanish for large Ks values. These results suggest that the efficiency of 
an infiltration structure would primarily benefit from a detailed analysis 
and characterization of the subsurface system. Moreover, PF tends to 
increase for events characterized by a short duration (i.e., small values of 
d). Such a scenario corresponds to a strong rain intensity that promotes 
failure of the structure. An increase in the drainage coefficient (i.e., φm) 
and in the catchment area (i.e., S) yields a correspondingly similar 
(albeit only slight) increase of PF. The documented similarity of the 
trends of PF|S and PF|φm 

is linked to the format of the convolution integral 
(see Eq. (6)). It also suggests that the impact of the uncertainty of S as a 
parameter involved in the definition of the corrivation time (see Eq. (9)) 

is not relevant for the test cases here analyzed. Variations of the 
remaining model parameters (i.e., TR, i, and L for UL; and TR and L for 
UI) and design variables (D and H) do not induce significant variations in 
the probability of failure of the drainage structure. This, in turn, implies 
that the imperfect knowledge of climate conditions (as quantify by TR) 
and the location of the groundwater water table (i.e., L) as well as the 
design variables (selected within intervals usually adopted in practical 
applications) are not too significant in the assessment of the probability 
of failure of the structure under the action of a Uniform hyetograph. 

Otherwise, when considering the Chicago hyetograph, inspection of 
Fig. 4c-d reveals the following key features: (i) variations in Ks, φm, and S 
lead to strong variations in the conditional PF, independent of the IUH 
formulation considered (i.e. for CL, CI); (ii) PF|i increases with i for the CL 
model set since increasing i would lead to a faster catchment response, 
thus favoring higher values of Qe and a higher PF; (iii) the design pa-
rameters of the drainage structure impact PF in a similar way (since both 
quantities are linked to the well storage volume). Similar to what 
observed for the Uniform hyetograph, PF is not significantly influenced 
by L and TR also in the presence of a Chicago model. Moreover, 
consistent with the rainfall model adopted, also the rain duration does 
not induce marked variations in the values of PF. These results suggest 
that, with reference to the surface hydrology compartment of the system 
considered, the key role is played by the dynamics of the interaction 
between the catchment response (as rendered through the IUH) and the 
temporal evolution of the rain intensity (as rendered by the employed 
hyetograph). 

Fig. 5a provides a synthesis of the results of the analysis by depicting 
the values of the single-model sensitivity indices AMAPxi in Eq. (13) 
associated with the uncertain parameters and design variables for all 
models investigated. These results suggest that the adoption of the 
Uniform hyetograph leads to an overall larger degree of sensitivity to all 
parameters affected by uncertainty as compared to what can be 
observed when the Chicago hyetograph is employed. This behavior is 
due to the definition of the sensitivity index AMAPxi , where PF (whose 
values are lower for UL and UI than their counterparts associated with 
CL and CI) appears at the denominator. When considering the UL or the 

Fig. 4. Unconditional probability of failure, i.e., PF (horizontal black lines) and conditional probability of failure, i.e.,PF|xi . Intervals of variability of each parameter 
are rescaled between 0 and 1 for ease of interpretation. Results are for (a) UL, (b) UI, (c) CL and (d) CI model sets. The unconditional multi-model probability of 
failure, i.e., PF

M (horizontal dashed grey line) is also depicted. 
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UI model set, the dominant parameter is associated with the conduc-
tivity of the groundwater system, as quantified by the values of AMAPKs . 
In particular, one can note that AMAPKs > 1 because PF|Ks ≫ PF when the 
conductivity of the subsurface system is very low. Otherwise, the CL and 
CI model sets are characterized by a more even level of sensitivity to the 
influential parameters pertaining to the surface (i.e., S, φm, and even-
tually i for CL) and subsurface (Ks) compartments of the system as well as 
to the design variables (i.e., D and H). 

3.2. Multi-model sensitivity analysis 

In this Section we focus on the sensitivity of PF considering the 
collection of the four models analyzed, i.e., embedding model uncer-
tainty in the analysis. The unconditional multi-model probability of 
failure PM

F is depicted in Fig. 3a-d (horizontal dashed grey lines). Fig. 5b 
depicts the multi-model sensitivity indices, AMAP

x
Mj
i

, associated with 

models Mj = UL, UI, CL, and CI. 
As shown in Eq. (14), the between-models contributions of AMAP

x
Mj
i 

(highlighted in black in Fig. 5b) represent the portion of the parameter 
sensitivity (in a multi-model context) that can be related to the 
discrepancy between the unconditional multi-model PF and its (un-
conditional) counterpart associated with a specific model considered. In 
the setting analyzed, we obtain very similar values for the between- 
models contributions to AMAPxUL

i 
and AMAPxUI

i
. This result is due to 

(a) the equal model weights (i.e., wUL = wUI = 0.25) considered and (b) 
the observation that the single model PF computed for UL (PUL

F ) and UI 

(PUI
F ) are almost identical, as shown in Fig. 4a-b. Otherwise, slightly 

smaller and larger values are observed for the between-models contri-
butions related to AMAPxCL

i 
and AMAPxCI

i
, respectively (see Fig. 5b). This 

result is linked to the observation that 
⃒
⃒PM

F − PCL
F
⃒
⃒ <

⃒
⃒PM

F − PUI
F
⃒
⃒ <

⃒
⃒PM

F − PCI
F
⃒
⃒ (see Fig. 4). Furthermore, we 

observe that the between-models contribution is key to each AMAP
x

Mj
i

, 

reflecting the different values of PMj
F associated with each of the distinct 

models considered. In other words, taking into account uncertainty in 
the model is critical to fully characterize the impact of parameters and 
design variables on PF. 

Comparing single- and multi-model sensitivity indices reveals an 
overall agreement between the relative degree of sensitivity of PF to the 
various model parameters. One can note that Ks is the parameter 
showing the highest sensitivity in both the single- and multi-model 
contexts considering the Uniform hyetograph. At the same time, we 
note that the values of AMAP

x
Mj
i 

are more evenly distributed amongst the 

various parameters than considering the corresponding results obtained 
within a single-model analysis. The latter behavior is consistent with the 
observation that in the multi-model context parameters that do not 
induce strong within-model contributions to PF, i.e., parameters with low 
values of AMAPxi , are still associated with non-negligible between- 
models contribution (related to the choice of the model where these 
appear). We further note that, considering UL and UI, we obtain 
AMAP

x
Mj
i

< AMAPxi (see Fig. 5), in agreement with the observation that 

PUI
F ≈ PUL

F ≪PM
F (see Fig. 4) and Eq. (16). The opposite is documented 

Fig. 5. (a) Single-model, AMAPxi and (b) multi-models, AMAP
x

Mj
i

, sensitivity indices for parameter xi (see color legend) and models Mj = (UL; UI; CL; CI). The 

between-models contribution to AMAP
x

Mj
i 

is highlighted in black. (For interpretation of the references to color in this figure legend, the reader is referred to the Web 

version of this article.) 
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considering CL and CI, where AMAP
x

Mj
i

> AMAPxi (and PCI
F > PCL

F ≫ PM
F ). 

3.3. Impact of process uncertainty 

We leverage on the results presented in Section 3.2 to provide an 
overall quantification of the impact of the uncertainty associated with 
each process (i.e., rain, runoff, and infiltration) on PF. We do so by re- 
casting Eq. (15) within a process-oriented framework (Dell’Oca et al., 
2020). We then evaluate the sensitivity of PF with respect to the k-th 
system process, Pk, as 

AMAPPk =
∑N

k
M

j=1
wMj

⃒
⃒
⃒PM

F − PMj
F

⃒
⃒
⃒

PM
F

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
between− models

+
∑N

k
M

j=1
wMj

∑N
(k,Mj)
p

i=1

∫

Γ
x
(k,Mj)
i

⃒
⃒
⃒
⃒
⃒
PMj

F − P
F

⃒
⃒
⃒x
(k,Mj)
i

⃒
⃒
⃒
⃒
⃒

PM
F

ρ
x
(k,Mj)
i

dx(
k,Mj)

i

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
within− model

(18)  

where Nk
M is the number of models within which process Pk appears; 

x(k,Mj)

i is the i-th parameter associated with the k-th process as described 

in model Mj; P
F
⃒
⃒
⃒x

(k,Mj )
i 

is the value of PF conditional to parameter x(k,Mj)

i ; 

N(k,Mj)
p is the number of parameters x(k,Mj)

i associated with the k-th pro-

cess as described in model Mj; and ρ
x
(k,Mj )
i 

is the (marginal) pdf of x(k,Mj)

i 

defined across the support Γ
x
(k,Mj )
i

. The sensitivity index AMAPPk quan-

tifies the degree of variability in PF (i) ascribable to the variability of Pk 

across the set of models within which Pk is implemented (between-models 
contribution) and (ii) due to the variability of PF with respect to the 
parameters pertaining to Pk (within-model contribution). In our case, 
Nk

M = 4 (with k = rain, run (for the runoff process), and inf (for the 
infiltration process)) for all of the three identified processes (i.e., all 
processes appear in all of the analyzed models). The number of pa-
rameters associated with each process across the ensemble of selected 

models is N(rain,Mj)
p = 2 (i.e., TR and d) and N(inf ,Mj)

p = 4 (i.e., KS, L, H, and 
D) for all models considered (i.e., Mj = UI, CI, UL, and CL) while 
N(run,Mj)

p = 2 (i.e., φm and S) for Mj = [UI; CI] and N(run,Mj)
p = 3 (i.e., φm, S, 

and i) for Mj = [UL; CL]. 

Fig. 6 depicts AMAPPk highlighting the between-models and within- 
model terms embedded in Eq. (18) as well as their relative contributions 
stemming from the diverse models here considered. All three processes 
are characterized by the same between-models contributions since all of 
them appear within each of the four models considered. The diverse 
components of the between-models contributions appear to be associated 
with identical strengths. This prevents one from neglecting any of the 
modeling formulations. Values of AMAPinf are the largest ones (due to a 
higher within-model contribution), followed by the AMAPrun index. The 
smallest value is obtained for AMAPrain, since the overall impact of TR 
and d on PF is not critical for the test scenario considered. 

4. Conclusions 

We perform a rigorous (multi-model) Global Sensitivity Analysis 
(GSA) to assist the preliminary design phase of an infiltration (or 
drainage) structure (LID) in the context of an urban catchment. Doing so 
enables us to assess the relative impact of (a) model formulation and 
ensuing parametrization and (b) main design variables on the proba-
bility of failure (PF) of a LID. Regarding the (conceptual/mathematical) 
modeling approach employed to describe the system, we focus on the 
hydro-geological aspects (i.e., rain intensity, runoff and soil drainage 
capacity) as major source of uncertainty. We consider uniform (U) and 
Chicago (C) hyetographs combined with linear (L) and/or negligible 
corrivation time (I) reservoir models. This yields a collection of four 
distinct models (here termed UL, CL, UI, and CI) that reflects lack of 
deterministic knowledge about the system conceptualization. We 
perform the GSA within a single-model (i.e., each alternative model 
within the ensemble is consider as the reference one) and a multi-model 
(i.e., all of the alternative models in the ensemble are considered at the 
same time) framework to enable discriminating the contribution of the 
various sources of uncertainty considered to the variability of PF. In the 
multi-model context, we also perform a process-based GSA to quantify 
the relevance on PF of the various processes involved in our system. 

Our results suggest that the adoption of the Uniform hyetograph 
leads to (overall) low values of PF and very similar behaviors for UL and 
UI. This suggests that the modeling choice about the reservoir model is 
not critical when the rain intensity is (approximately) uniform. The 
degree of variability of PF across the UL and UI model sets is dominated 
by the uncertainty associated with the hydraulic conductivity of the 
subsurface domain. Otherwise, considering a Chicago hyetograph yields 
(overall) higher values of PF while, at the same time, PF is less sensitive 
with respect to the diverse parameters employed in the models. 

The multi-model GSA leads to a more even level of sensitivity of PF 
across model parameters as compared with results for the single-model 

Fig. 6. Process-based sensitivity indices AMAPPk for system process Pk (k = rain; run; inf). The between-models (b–m) and within-model (w–m) terms are also high-
lighted for each process. 
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GSA. Within the multi-model context, we find that the between-models 
contribution is key to the degree of sensitivity of PF to each parameter. 
This is due to the observed differences in the values of PF obtained when 
diverse hyetograph models are adopted. The process based analysis 
confirms the relevance of the between-models contribution in our setting. 
Uncertainty in the assessment of PF is mainly driven by the infiltration 
process, followed by the runoff and the intensity of the rain event. 

Our work highlights the importance of incorporating the uncertainty 
arising from the lack of deterministic knowledge about not only model 
parameters but also model formulation when conducting a GSA of 
infiltration structures in urban contexts of the kind we consider. 
Neglecting model uncertainty (i.e., considering only a single-model 
context) can lead to (a) overconfidence on the structure performance 
(as rendered, e.g., through low values of PF, see Fig. 4a–b), or (b) excess 
of distrust (e.g., PF can be overestimated, see Fig. 4c-d), resulting in an 
oversizing of the infiltration structure (and an unnecessary cost in-
crease) to reduce PF to acceptable limits. 

CRediT authorship contribution statement 

Aronne Dell’Oca: Methodology, Investigation, Formal analysis, 
Writing – original draft. Alberto Guadagnini: Conceptualization, 
Methodology, Writing – review & editing. Monica Riva: Conceptuali-
zation, Methodology, Writing – review & editing. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

Acknowledgments 

Project funded under the National Recovery and Resilience Plan 
(NRRP), Mission 4 Component 2 Investment 1.4 - Call for tender No. 
3138 of December 16, 2021, rectified by Decree n.3175 of December 18, 
2021 of Italian Ministry of University and Research funded by the Eu-
ropean Union – NextGenerationEU; Project code CN_00000033, 
Concession Decree No. 1034 of June 17, 2022 adopted by the Italian 
Ministry of University and Research, CUP D43C22001250001, Project 
title “National Biodiversity Future Center - NBFC”. Aronne Dell’Oca 
acknowledges funding from the European Union’s Horizon 2020 
research and innovation program under the Marie Sklodowska-Curie 
[Grant Agreement No. 895152, MixUQ]. 

References 

Ahiablame, L.M., Engel, B.A., Chaubey, I., 2013. Effectiveness of low impact 
development practices in two urbanized watersheds: retrofitting with rain barrel/ 
cistern and porous pavement. J. Environ. Manag. 119, 151–161. https://doi.org/ 
10.1016/j.jenvman.2013.01.019. 

Ahiablame, L., Shakya, R., 2016. Modeling flood reduction effects of low impact 
development at a watershed scale. J. Environ. Manag. 171, 81–91. https://doi.org/ 
10.1016/j.jenvman.2016.01.036. 

Akan, A.O., 2002. Sizing stormwater infiltration structures. J. Hydrol. Eng. 128 (5), 
534–537. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:5(534). 

Azizian, A., 2018. Uncertainty analysis of time of concentration equations based on first- 
order-analysis (FOA) method. Am. J. Eng. Appl. Sci. 11 (1), 327–341. https://doi. 
org/10.3844/ajeassp.2018.327.341. 

Bach, P.M., Rauch, W., Mikkelsen, P.S., McCarthy, D.T., Deletic, A., 2014. A critical 
review of integrated urban water modelling-Urban drainage and beyond. Environ. 
Model. Software 54, 88–107. https://doi.org/10.1016/j.envsoft.2013.12.018. 

Baek, S.-S., Choi, D.-H., Jung, J.-W., Lee, H.-J., Lee, H., Yoon, K.-S., Cho, K.H., 2015. 
Optimizing low impact development (LID) for stormwater runoff treatment in urban 
area, Korea: experimental and modeling approach. Water Res. 86, 122–131. https:// 
doi.org/10.1016/j.watres.2015.08.038. 
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