Background and objective: 4D flow magnetic resonance imaging provides time-resolved blood flow velocity measurements, but suffers from limitations in spatio-temporal resolution and noise. In this study, we investigated the use of sinusoidal representation networks (SIRENs) to improve denoising and super-resolution of velocity fields measured by 4D flow MRI in the thoracic aorta. Methods: Efficient training of SIRENs in 4D was achieved by sampling voxel coordinates and enforcing the no-slip condition at the vessel wall. A set of synthetic measurements were generated from computational fluid dynamics simulations, reproducing different noise levels. The influence of SIREN architecture was systematically investigated, and the performance of our method was compared to existing approaches for 4D flow denoising and super-resolution. Results: Compared to existing techniques, a SIREN with 300 neurons per layer and 20 layers achieved lower errors (up to 50% lower vector normalized root mean square error, 42% lower magnitude normalized root mean square error, and 15% lower direction error) in velocity and wall shear stress fields. Applied to real 4D flow velocity measurements in a patient-specific aortic aneurysm, our method produced denoised and super-resolved velocity fields while maintaining accurate macroscopic flow measurements. Conclusions: This study demonstrates the feasibility of using SIRENs for complex blood flow velocity representation from clinical 4D flow, with quick execution and straightforward implementation.

Implicit neural representations for unsupervised super-resolution and denoising of 4D flow MRI

Saitta S.;Redaelli A.
2024-01-01

Abstract

Background and objective: 4D flow magnetic resonance imaging provides time-resolved blood flow velocity measurements, but suffers from limitations in spatio-temporal resolution and noise. In this study, we investigated the use of sinusoidal representation networks (SIRENs) to improve denoising and super-resolution of velocity fields measured by 4D flow MRI in the thoracic aorta. Methods: Efficient training of SIRENs in 4D was achieved by sampling voxel coordinates and enforcing the no-slip condition at the vessel wall. A set of synthetic measurements were generated from computational fluid dynamics simulations, reproducing different noise levels. The influence of SIREN architecture was systematically investigated, and the performance of our method was compared to existing approaches for 4D flow denoising and super-resolution. Results: Compared to existing techniques, a SIREN with 300 neurons per layer and 20 layers achieved lower errors (up to 50% lower vector normalized root mean square error, 42% lower magnitude normalized root mean square error, and 15% lower direction error) in velocity and wall shear stress fields. Applied to real 4D flow velocity measurements in a patient-specific aortic aneurysm, our method produced denoised and super-resolved velocity fields while maintaining accurate macroscopic flow measurements. Conclusions: This study demonstrates the feasibility of using SIRENs for complex blood flow velocity representation from clinical 4D flow, with quick execution and straightforward implementation.
2024
File in questo prodotto:
File Dimensione Formato  
11311-1260900_Saitta.pdf

accesso aperto

: Publisher’s version
Dimensione 13.71 MB
Formato Adobe PDF
13.71 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1260900
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact