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A B S T R A C T

Background and Objective: 4D flow magnetic resonance imaging provides time-resolved blood flow velocity measurements, but suffers from limitations in spatio-

temporal resolution and noise. In this study, we investigated the use of sinusoidal representation networks (SIRENs) to improve denoising and super-resolution of 
velocity fields measured by 4D flow MRI in the thoracic aorta.

Methods: Efficient training of SIRENs in 4D was achieved by sampling voxel coordinates and enforcing the no-slip condition at the vessel wall. A set of synthetic 
measurements were generated from computational fluid dynamics simulations, reproducing different noise levels. The influence of SIREN architecture was 
systematically investigated, and the performance of our method was compared to existing approaches for 4D flow denoising and super-resolution.

Results: Compared to existing techniques, a SIREN with 300 neurons per layer and 20 layers achieved lower errors (up to 50% lower vector normalized root mean 
square error, 42% lower magnitude normalized root mean square error, and 15% lower direction error) in velocity and wall shear stress fields. Applied to real 
4D flow velocity measurements in a patient-specific aortic aneurysm, our method produced denoised and super-resolved velocity fields while maintaining accurate 
macroscopic flow measurements.

Conclusions: This study demonstrates the feasibility of using SIRENs for complex blood flow velocity representation from clinical 4D flow, with quick execution and 
straightforward implementation.
1. Introduction

4-dimensional flow encoded magnetic resonance imaging (4D flow 
magnetic resonance imaging (MRI) or 4D flow) is the only existing 
non-invasive imaging technique that provides true time-resolved 3-

dimensional (3D) and 3-directional blood flow velocity measurements 
[18]. 4D flow is based on the phase contrast MRI (PC-MRI) principle, 
which makes use of bipolar magnetic gradients to calculate the phase 
shift of moving protons. PC-MRI encodes tissue velocity 𝐯(𝐱, 𝑡) ∈ ℝ3 at 
spatial location 𝐱 during cardiac phase 𝑡 (1 ≤ 𝑡 ≤𝑁𝑡) according to:

𝜌𝑖(𝐱, 𝑡) = 𝜌0(𝐱, 𝑡) exp
(
𝑗𝜋

(𝚽𝐯(𝐱, 𝑡)))𝑖
𝑉 𝐸𝑁𝐶

)
, (1)

where 𝑉 𝐸𝑁𝐶 is a manually set parameter determining the maximum 
velocity that can be recorded, 𝑖 = 0, ..., 3 are the encoded velocity com-

ponents, and adopting a four-point velocity encoding, 𝚽 is defined as:

* Corresponding author.

𝚽 =
⎡⎢⎢⎢⎣
0 0 0
1 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎦
. (2)

Hence, the measured tissue velocity component 𝑖 is proportional to the 
phase shift of the reconstructed images 𝜌𝑖 [42].

Considering 𝝆𝑖𝑡 ∈ ℝ𝑁𝑟×𝑁𝑐×𝑁𝑠 a discretized complex PC image on 
a Cartesian 𝑁𝑟 × 𝑁𝑐 × 𝑁𝑠 grid corresponding to cardiac phase 𝑡 and 
velocity component 𝑖, the reconstructed image 𝐇(𝝆𝑖𝑡) ∈ℝ𝑁𝑟×𝑁𝑐×𝑁𝑠 can 
be modeled as:

𝐇(𝝆𝑖𝑡) = 𝐅−1(𝐌(𝐅(𝝆𝑖𝑡) + 𝜖)), (3)

where 𝐅 is the Fourier transform, 𝐌 ∈ {0, 1}𝑁𝑟×𝑁𝑐×𝑁𝑠 defines the un-

dersampling mask in k-space, and 𝜖 ∈ ℂ𝑁𝑟×𝑁𝑐×𝑁𝑠 is the additive com-

plex noise. Herein, we have neglected coil sensitivity maps for simplic-
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ity, a more rigorous description of the PC-MRI measurement operator 
can be found in [42].

Velocity fields measured by 4D flow MRI can be processed after 
reconstruction to quantify more complex and clinically relevant hemo-

dynamic biomarkers such as wall shear stress (WSS) [4,40,6], relative 
pressure [7,31] and vortex structure [26]. However, reconstructed flow 
images suffer from important limitations that make them inadequate for 
accurate assessment of blood flow markers. These limitations mainly 
concern spatio-temporal resolution, velocity encoding (VENC) related 
signal to noise ratio (SNR) and k-space noise [16]. Overcoming 4D flow 
limitations by reducing noise levels and enhancing its spatio-temporal 
resolution, would lead to more accurate hemodynamic assessment, 
boosting its widespread adoption and increasing its clinical usefulness.

In this work, we present a novel application of implicit neural rep-

resentations (INRs) [34] to achieve super-resolution (SR) and denoising 
of 4D flow MRI velocity fields. Our approach provides a continuous re-

construction of blood flow in both space and time, showing superior 
performance with respect to existing baseline methods for 4D flow de-

noising.

1.1. Related work

Several lines of research have been pursued to overcome the main 
limitations of 4D flow MRI velocity measurements and provide more ac-

curate non-invasive hemodynamic assessment. For the sake of brevity, 
we will only focus on image processing approaches, but it is important 
to mention other strategies based on Kalman filtering [12,14], adjoint-

based optimization [39], reduced order modeling-based regression [3], 
and physics-informed compressed sensing [17]. Most image processing 
approaches employ interpolation techniques to approximate flow data, 
incorporating some form of regularization to impart desirable charac-

teristics to the resulting velocity fields. Within this category, we discern 
between conventional denoising approaches and recent neural network-

based methods.

Conventional denoising approaches adopt signal processing tools to en-

hance the acquired flow MRI data after reconstruction. Busch et al. 
[8], achieved denoising by projecting noisy flow measurements onto a 
3D space of divergence-free radial basis functions (RBFs). Nonetheless, 
strict enforcement of the divergence-free condition may result in over-

regularized velocity fields, especially in flow regions near edges of flow 
(boundaries). An approach to softly enforce the divergence-free condi-

tion was proposed by a Ong et al. [21]. By constructing divergence-free 
wavelets (DFWs), the authors essentially achieve wavelet denoising, 
but the different choice of wavelets enables correction of divergent 
flow components, providing flow fields with more coherent stream-

lines when compared to unfiltered medical data. By directly processing 
images, these data-based methods are typically characterized by high 
computationally efficiency. However, none of the proposed approaches 
so far has taken into account the time-dependent nature of 4D flow data. 
Additionally, working on structured grids (images) prevents a precise 
quantification of near-wall blood flow markers that are often sought-

after in medical applications, such as WSS fields. In a recent study [38], 
4D RBFs were used to reconstruct velocity fields measured with MRI. 
To make their approach computationally light, the authors combined 
multi-quadric RBF interpolation with a partition of unity scheme. Since 
it operates on scattered data, this approach becomes efficient in high di-

mensions, and well-suited for enforcing Dirichlet boundary conditions 
on the reconstructed velocity fields and improving quantification of 
near-wall features.

Neural network approaches aim to learn approximations of complex 
nonlinear functions. A popular paradigm for exploiting the high expres-

sive power of neural networks (NNs) is represented by physics informed 
neural networks (PINNs). In the formulation proposed in [25], PINNs 
2

are parametrized multi-layer perceptrons (MLPs) that learn a function 
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mapping coordinates to outputs. PINNs can be seen as continuous func-

tions fitting sparse observations and simultaneously minimizing the 
residual of a partial differential equation (PDE) (in differential form) 
that is identified as the mathematical model that generated the data. 
Nonetheless, when training PINNs, choosing the correct hyperparam-

eters is often the result of a trial and error procedure; when dealing 
with high dimensional problems, hyperparameter tuning can become 
unfeasible. To date, the only application of PINNs to 4D flow MRI data 
is the work of Fathi et al. [9]. The authors tested their approach on 
synthetic 4D flow data from a reference computational fluid dynamics 
(CFD) simulation for which ground truth velocity and pressure fields 
were known, achieving SR and superior denoising with respect to DFWs 
[21]. Successively, they evaluated their method on in vitro 4D flow ve-

locity measurements, but not on in vivo medical data.

PINNs can be thought of as a subset of coordinate-based MLPs 
[34,36,19]. These networks can represent complex signals by taking 
low-dimensional coordinates as input and returning the value of the sig-

nal at the input locations. Such signal representations are often referred 
to as INRs [34]. Signals represented by coordinate-based MLPs can be 
orders of magnitude more compact than their grid-based counterparts 
[37]. However, coordinate-based MLPs are known to suffer from se-

vere spectral bias, namely they struggle to learn the high frequency 
signal components. Successful biomedical applications of coordinate-

based networks include 3D vascular surface reconstruction [1] and 
non-rigid medical image registration [44]. A further improvement of 
coordinate-based MLPs to capture high order derivatives in the output 
signal was achieved by employing sinusoidal activation functions for 
every hidden neural network layer, as introduced by Sitzmann et al. 
[34]. Sinusoidal representation networks (SIRENs) have been shown to 
be suited for representing complex natural signals, including images, 
solutions to Poisson equations and 3D shapes [34].

In this work, we employ SIRENs for learning time-varying velocity 
fields measured by 4D flow MRI. We leverage the MLP’s architecture 
to introduce an implicit prior to constrain the space of solutions and 
investigate such implicit regularization bias towards lower frequencies, 
which simultaneously prevents overfitting and reduces noise in flow-

encoded MR images.

2. Method

2.1. Problem setting

Let 𝑉 ∗ ∈ ℝ𝑁𝑟×𝑁𝑐×𝑁𝑠×𝑁𝑡×3 be a time-resolved flow image volume 
sequence obtained from a reconstructed 4D flow acquisition, with 𝑁𝑟, 
𝑁𝑐 , 𝑁𝑠 and 𝑁𝑡 being the number of rows, columns, slices and cardiac 
frames, respectively. Let Δ𝒙 ∈ ℝ3 and Δ𝑡 ∈ℝ be the physical spacings 
between adjacent voxels along the spatial and temporal dimensions. At 
a voxel center with 4D coordinates [𝒙𝑖, 𝑡𝑗 ], where 𝒙𝑖 ∈ ℝ3, we denote 
the measured velocity vector as: 𝑉 ∗[𝒙𝑖, 𝑡𝑗 ] ∈ℝ3, with 𝑖 ∈ [1, 𝑁𝑟 ×𝑁𝑐 ×
𝑁𝑠], and 𝑗 ∈ [1, 𝑁𝑡]. Herein, the index 𝑖 refers to the flattened spatial 
coordinates of the image (i.e., converted into a one-dimensional array, 
merging all elements into a single level).

We are interested in representing 𝑉 ∗ with a continuous function 
𝑓 ∶ ℝ4 → ℝ3, where 𝑓 (𝒙𝑖, 𝑡𝑗 ) = 𝑉 ∗[𝒙𝑖, 𝑡𝑗 ]. To approximate 𝑓 , we use 
an MLP 𝑓𝚯 with weights 𝚯 and with sinusoidal activation functions 
(SIREN). The 𝑙-th layer of a SIREN receiving a generic input tensor 𝐱𝑙 ∈
ℝ𝑄𝑙 performs the following operation:

𝐱𝑙+1 = sin(𝚯𝑙𝐱𝑙 + 𝐛𝑙), (4)

where 𝚯𝑙 ∈ℝ𝑃𝑙×𝑄𝑙 and 𝐛𝑙 ∈ℝ𝑃𝑙 are the weight matrix and biases of the 
𝑙-th layer, respectively. Following [34], each weight 𝜃 is initialized so 
that 𝜃 ∼ (−

√
6∕𝑐, 

√
6∕𝑐), where 𝑐 is the generic input feature size. As 

motivated by [34], this initialization makes the input of each sine ac-

tivation being Gauss-Normal distributed, and the output approximately 

arcsine-distributed. Furthermore, as proposed by [34], the first layer 
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Fig. 1. Conceptual diagram of the proposed approach. The SIREN model is given spatial coordinates �̂�𝑖, ̂𝑦𝑖, ̂𝑧𝑖 and temporal coordinate 𝑡𝑗 . The network outputs the 
three velocity components evaluated at the input coordinates denoted as 𝑢 , 𝑣 , 𝑤𝑖𝑗 .
𝑖𝑗 𝑖𝑗

of the SIREN is modified as: sin(𝜔0 ⋅ 𝚯𝐱 + 𝐛). Following [34], we set 
𝜔0 = 30, ensuring that the first sine layer spans multiple periods over 
the input coordinates interval.

For our purposes, a key advantage of this formulation lies in repre-

senting a high dimensional image as a continuous function that can be 
queried at arbitrary spatio-temporal resolutions.

2.2. Training a SIREN in 4D

In most practical cases dealing with blood vessels, one is only inter-

ested in reconstructing blood flow within a bounded region Ω ⊂ ℝ3

with inflow boundary Γi, outflow boundary Γo and wall boundary 
Γw, and within a time interval [𝑡𝑎, 𝑡𝑏]. The inner fluid region is de-

noted by Ωf = Ω ⧵ {Γi ∪ Γo ∪ Γw}. In our approach, velocity field 
reconstruction is achieved by sampling 𝑁f spatial voxel coordinates 
𝒙
(f) from Ωf repeated over the time interval [𝑡𝑎, 𝑡𝑏], i.e., (𝒙(f)

𝑖
, 𝑡𝑗 ), 

with 𝑖 = 1, 2, ..., 𝑁f ; 𝑗 = 1, 2, ..., 𝑁𝑡. Additionally, we enforce the no-

slip condition on the vessel wall by sampling 𝑁w spatial coordinates 
from Γw repeated over the time interval [𝑡𝑎, 𝑡𝑏], i.e., (𝒙(w)𝑝 , 𝑡𝑞), with 
𝑝 = 1, 2, ..., 𝑁w; 𝑞 = 1, 2, ..., 𝑁𝑡. Of note, we oversample spatial coordi-

nates from Γw by setting 𝑁f ≈𝑁w sample 𝑁w ≈𝑁f spatial coordinates 
from Γw. We denote the total number of spatial coordinates used for

SIREN training as 𝑁 =𝑁f +𝑁w. Unlike the original SIREN formulation, 
this approach allows us to only use a relatively small set of coordinates 
compared to the total number of image points, greatly reducing training 
time and memory cost.

For each generic input coordinate pair (𝒙, 𝑡), the following non-

dimensionalization is performed:

�̂� =
𝒙− 𝒙𝑚𝑖𝑛

Δ𝒙
𝐷, 𝑡 =

𝑡− 𝑡𝑚𝑖𝑛

Δ𝑡
𝐷, (5)

where 𝒙𝑚𝑖𝑛 and 𝑡𝑚𝑖𝑛 are the minimum spatial and temporal coordinates, 
and we set 𝐷 = 0.01 thus ensuring that the first sine layer of our MLP 
spans multiple cycles in the input coordinate interval.

Training 𝑓𝚯 implies solving the following minimization problem:

min
𝚯

(𝚯), (6)

where the loss function  is given by the misfit between the MLP pre-

diction and the measured data plus a boundary condition term:

(𝚯) =
𝑁f ,𝑁𝑡∑
𝑖=1,𝑗=1

‖𝑓𝚯(�̂�(f)𝑖
, 𝑡𝑗 ) − 𝑉 ∗[𝒙(f)

𝑖
, 𝑡𝑗 ]‖22 +

𝑁w ,𝑁𝑡∑
𝑝=1,𝑞=1

‖𝑓𝚯(�̂�(w)𝑝
, 𝑡𝑞)‖22. (7)

Hence, the only supervision comes from the image values and fixed 
3

Dirichlet boundary conditions represented by the no-slip condition at 
the wall, making the approach fully unsupervised. A diagram represen-

tation of the proposed method is shown in Fig. 1. Training is carried out 
using a limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) al-

gorithm with learning rate of 1 until ∇𝚯 = 0.

2.3. SIREN evaluation

Once trained, 𝑓𝚯 can be queried at arbitrary spatio-temporal collo-

cation points denoted as (𝒙′, 𝑡′), sampled from the spatio-temporal do-

main Ω × [𝑡𝑎, 𝑡𝑏]. To evaluate the generalization capabilities of a trained

SIREN, collocation points corresponding to 𝑁 ′ spatial coordinates 
and 𝑁 ′

𝑡
temporal coordinates, i.e., (𝒙′

𝑛
, 𝑡′

𝑛
), with 𝑛 = 1, 2, ..., 𝑁 ′; 𝑚 =

1, 2, ..., 𝑀 ′, are defined at ≈ ×20 higher spatial resolution and ×10 
higher temporal resolution than image coordinates. Non-dimensionali-

zation of evaluation coordinates is operated consistently with the one 
used for the training set:

�̂�
′ =

𝒙
′ − 𝒙𝑚𝑖𝑛

Δ𝒙
𝐷, 𝑡′ =

𝑡′ − 𝑡𝑚𝑖𝑛

Δ𝑡
𝐷. (8)

Therefore, we evaluate 𝑓𝚯 on: (�̂�′
𝑛
, ̂𝑡′

𝑚
), 𝑛 = 1, ..., 𝑁 ′; 𝑚 = 1, ..., 𝑀 ′.

2.4. Error quantification

To quantify errors obtained in experiments, three different metrics 
were used. Differences between a reference vector field 𝒖𝑟𝑒𝑓 and an-

other generic vector field 𝒖, were evaluated by computing velocity 
normalized root mean square error (vNRMSE), magnitude normalized 
root mean square error (mNRSME), and the direction error (DE) as:

𝑚𝑁𝑅𝑀𝑆𝐸 = 1
max |𝒖𝑟𝑒𝑓 |

√√√√ 1
𝐾

𝐾∑
𝑘=1

(|𝒖|− |𝒖𝑟𝑒𝑓 |)2𝑘 × 1000, (9)

𝑣𝑁𝑅𝑀𝑆𝐸 = 1
max |𝒖𝑟𝑒𝑓 |

√√√√ 1
𝐾

𝐾∑
𝑘=1

(𝒖− 𝒖𝑟𝑒𝑓 )2𝑘 × 1000, (10)

𝐷𝐸 = 1
𝐾

𝐾∑
𝑘=1

(
1 −

|𝒖𝑟𝑒𝑓 ,𝑘 ⋅ 𝒖𝑘||𝒖𝑟𝑒𝑓 ,𝑘||𝒖𝑘|
)
× 100, (11)

where 𝐾 is the generic number of 4D points where the two velocity 
fields are evaluated.

2.5. Wall shear stress analysis

From a generic velocity field, the WSS field was calculated follow-

ing the approach described in [22]. From the definition of WSS for a 

Newtonian fluid:
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Fig. 2. a) Computational domain. b) Time-varying 3-directional velocity profiles prescribed at as inlet boundary condition. c) Flow waveform imposed at Γ .
𝑊𝑆𝑆 = 𝜇

(
𝜕𝑣

𝜕𝑦

)
𝑦=0

, (12)

where 𝜇 is the dynamic viscosity, 𝑣 is the component of the velocity 
vector that is locally parallel to the wall, and 𝑦 is the Euclidean dis-

tance from the wall, for each spatial 3D point on the vessel wall (Γw), 
the implemented WSS calculation method requires interpolation of the 
velocity fields at 2 points evenly spaced by a distance 𝛿𝑛 along the in-

ward normal. The so obtained local velocity profile is interpolated with 
a quadratic function, whose analytical derivative is used to approximate 
𝜕𝑣∕𝜕𝑦. In our experiments, we set 𝛿𝑛 = 0.5𝑚𝑚 and the no-slip condition 
at the wall.

2.6. Case 1: synthetic 4D flow MRI

CFD simulation To have a benchmark for evaluating the proposed 
method, a synthetic 4D flow MRI acquisition was created from a ref-

erence CFD simulation. First, the ascending aorta of a subject with 
thoracic aortic aneurysms (TAA) was segmented from 3D magnetic res-

onance angiography (MRA) images using open-source software [45]. 
The segmented domain Ω, was divided into 3 subdomains: inlet Γi, 
outlet Γo and wall Γw (Fig. 2a). A 3D tetrahedral mesh with a base 
size of 0.6 mm and minimum size of 0.05 mm was generated using 
the vascular modeling toolkit (VMTK) library [15]. The final volumet-

ric mesh consisted of ≈ 800k nodes and 4M elements. Time-varying 
3-directional velocity profiles (Fig. 2b) were prescribed as inlet bound-

ary conditions, mapping a realistic TAA inlet velocity profile to the Γi
following the approach described in [30] and producing the flow wave-

form represented in Fig. 2c. A zero-pressure condition was enforced on 
Γo and a homogeneous Dirichlet boundary condition (no-slip) was as-

sumed on Γw. Blood was modeled as a Newtonian fluid with constant 
density 𝜌 = 1060 kg/m3 and dynamic viscosity 𝜇 = 0.004 Pa⋅s. A fi-

nite volume simulation was run at a fixed time step of 0.001 s. An 
implicit scheme with splitting of operators (PISO) was used to solve the 
governing equations of blood flow in Star-CCM+. To lighten the com-

putational cost related to graphics processing unit (GPU) memory, and 
to focus on the more interesting flow details, results were exported at 
every timestep within the time interval [0.2–0.399] s (peak to late sys-

tole), yielding a sequence of 𝑀 ′ = 200 velocity fields 𝒖∙ defined on the 
computational nodes 𝒙′

𝑛
, 𝑛 = [1, ..., 𝑁 ′] over the simulation time coordi-

nates 𝑡′
𝑚
, 𝑚 = [1, ..., 𝑀 ′].

Synthetic data creation Noise-free, high resolution CFD velocity fields 
were processed to obtain low resolution velocity fields corrupted with 
noise typical of 4D flow MRI measurements. To achieve this, the follow-

ing steps were implemented partially following [10]:

1. the sequence of CFD solution snapshots denoted by 𝒖∙ was tem-
′

4

porally downsampled to a sequence of 𝑀 = 𝑀

ℎ
velocity fields �̄�, 
i

using a moving average such that: �̄�(𝒙′
𝑛
, 𝑡′

𝑗
) = 1

ℎ

∑𝑚+ℎ−1
𝑘=1 𝒖

∙(𝒙′
𝑛
, 𝑡′

𝑘
), 

with ℎ being the time averaging window size;

2. each time frame of �̄� was converted to a uniform Cartesian grid 
with voxel size of 1 mm3 using a linear interpolation scheme to 
assign velocity vector values to grid cells, yielding a sequence of 
Cartesian grids �̃� [�̃�𝑖, 𝑡𝑗 ] ∈ ℝ𝑁𝑟×𝑁𝑐×𝑁𝑠×𝑁𝑡×3, with 𝑁𝑟 = 76, 𝑁𝑐 =
112 and 𝑁𝑠 = 292;

3. each velocity grid in �̃� was converted to a complex tensor contain-

ing magnitude and phase images using suitable VENC values;

4. the fast Fourier transform was applied to obtain the corresponding 
k-space data;

5. a truncation of the 3D k-space data (high frequencies) was per-

formed, effectively decreasing the spatial resolution by a factor 
of 2;

6. a zero-mean Gaussian noise with standard deviation 𝜎 correspond-

ing to the desired SNR (calculated according to [10]) was added to 
the k-space data;

7. a randomized sampling mask drawn from a normal distribution and 
covering S% percent of the k-space was applied to further under-

sample the frequency content, keeping a fully sampled calibration 
region of 5 × 5 × 5 in the center of k-space;

8. the inverse Fourier transform was applied to the undersampled, 
noise-corrupted k-space, yielding a complex tensor of magnitude 
and phase images;

9. complex images were converted back to real images of velocity 
fields using VENC values consisted with step 3, obtaining a se-

quence of noisy synthetic velocity measurements 𝑈∗ defined at 
voxel coordinates 𝒙𝑖, 𝑖 = 1, ..., 𝑁 with isotropic voxel size of 2 ×2 ×2
mm3 and at times 𝑡𝑗 , 𝑗 = 1, ..., 𝑀 .

For each velocity direction, the VENC value was chosen 10% larger than 
the maximum velocity, so that the phase wrapping/unwrapping would 
not introduce aliasing artifacts corresponding to a value of 120 cm/s 
in each direction. The level of degradation of our synthetic measure-

ments is regulated by three parameters: ℎ, SNR and 𝑆 . We chose ℎ = 40
to obtain Δ𝑡 = 0.04 s, which is compatible with real medical measure-

ments. We tested our approach on three different levels of degradation, 
mild, medium or extreme reported in Table 1. For all noise levels, veloc-

ity measurements were characterized by an isotropic voxel spacing of 2 
mm for each dimension. For the extreme noise level, the generated syn-

thetic images for the three different velocity components are shown in 
Fig. 3.

As mentioned in Sections 2.2 and 2.3, the training and test coordi-

nates correspond to image voxel centers and to the CFD mesh nodes, 
respectively. In particular, the total number of spatial coordinates used 
for training was 𝑁 ≈ 40000, while the trained SIREN models were evalu-
ated at 𝑁 ′ ≈ 800000 spatial coordinates. On the other hand, the number 
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Fig. 3. Ground truth velocity vector components from CFD (first 3 rows), and corresponding velocity components after extreme noise addition. LR: left-to-right, AP: 
anterior-to-posterior, FH: foot-to-head.
Table 1

Degradation parameters for gener-

ating synthetic measurements from 
the reference velocity field.

Noise level SNR 𝑆

mild 20 99

medium 5 95

extreme 2 68

of temporal coordinates used for training was 𝑁𝑡 = 5, while the SR per-

formance was evaluated at 𝑀 ′ = 50 time points.

2.6.1. Comparison with existing methods

The denoising and SR performances of our approach were compared 
against existing methods. Among them, only 4D RBFs lend themselves 
to the joint task of denoising and SR. Hence, pure denoising approaches 
were combined with simple interpolation schemes to achieve SR. The 
following methods were tested:

1. linear interpolation (LITP) as a baseline for SR;

2. DFW with automatic threshold selection based on SureShrink [21]

for denoising and LITP for SR. Velocity fields generated by this 
approach will be denoted as DFW;

3. 3D divergence-free radial basis functions (DF-RBFs) as described in 
[8] for denoising and LITP for SR. Velocity fields generated by this 
approach will be denoted as DF-RBF;

4. an approach based on 4D RBFs [38], but for which no official im-

plementation was available. Hence, we implemented our version 
of 4D RBFs with multi-quadric kernel and local support for denois-

ing and SR. We set 10 as the number of nearest neighboring points 
for local kernel support. A soft enforcement of the no-slip condi-
5

tion on the vessel wall was applied by setting null velocity values 
at point belonging to the wall region. Velocity fields generated by 
this approach will be denoted as 4D-RBF.

2.7. Case 2: in vivo 4D flow MRI

A thoracic 4D flow MRI scan of a subject with ascending thoracic 
aortic aneurysm was retrospectively retrieved. Images were fully dein-

tentified and provided by Weill Cornell Medicine, (NY, USA). A respi-

ratory compensated technique was adopted with the following settings: 
spatial resolution (voxel size) 1.14 mm × 1.14 mm × 0.9 mm, field 
of view = 360 mm, flip angle = 15°, VENC = 200 cm/s in all 3 di-

rections, time between consecutive frames = 30 ms, for a total of 20 
frames per cardiac cycle. DICOM images were processed using open-

source code [30] to compute the phase-contrast magnetic resonance 
angiography (PC-MRA) image and extract the segmentation of the en-

larged ascending aortic tract (Fig. 4). The segmentation was performed 
on a time-averaged configuration by an experienced operator using a 
combination of a region growing semi-automatic algorithm and man-

ual delineation of the vessel contours. As for Case 1, a volumetric mesh 
with base element size of 0.6 mm and approximately 4M elements was 
generated. Mesh node coordinates were used for evaluating the trained 
model, entailing an ≈ ×20 increase between training and evaluation 
spatial coordinates. As for Case 1, temporal coordinates were increased 
×10 from training to evaluation.

The velocity components measured through flow MRI can be visual-

ized in Fig. 5.

3. Results

3.1. Case 1: hyperparameter tuning

The effects of SIREN’s depth (number of layers) and width (number 

of neurons per layer) on the denoising and SR performances were as-
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Fig. 4. a): segmented 3D geometry (red) superimposed on a sagittal slice of PC-MRA images. b) the segmented 3D region with an axially oriented slice (top) and the 
contours of the static segmentation superimposed on the velocity magnitude images at different time points denoted in the top left corners.

Fig. 5. Sagittal 2D slice within the aortic aneurysm (bottom left), together with colormaps of left-to-right (LR rows), posterior-to-anterior (PA rows) and foot-to-head 
(FH rows) velocity components. Rows 4 to 6 show velocities sampled on a 3D mesh by linear interpolation. Columns from left to right correspond to increasing time 
6

points.
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Table 2

Velocity fields comparison at training coordinates. In 
each cell values of mNRMSE (top), vNRMSE (middle) 
and DE (bottom) are reported. The first column con-

tains the errors computed between the ground truth 
CFD solution and the noisy 4D flow data at voxel 
centers. The second column contains errors computed 
between the ground truth CFD solution and the evalu-

ation of the trained SIREN at voxel centers. Errors are 
reported for the three levels of noise.

𝒖𝑟𝑒𝑓 = 𝒖
∙(𝒙, 𝑡) 𝒖𝑟𝑒𝑓 = 𝒖

∙(𝒙, 𝑡)
𝒖 = 𝑉 ∗[𝒙, 𝑡] 𝒖 = 𝑓𝚯(𝒙, 𝑡)

31.7 30.6

mild 28.0 27.1

27.2 27.0

53.2 38.3

medium 52.4 39.4

33.0 31.1

70.9 45.1

extreme 82.8 50.7

37.9 32.7

Table 3

Effect of SIREN number of layers (depth) and number 
of neurons per layer (width) on denoising and super-

resolution using data with mild noise level. In each 
cell values of mNRMSE (top), vNRMSE (middle) and 
DE (bottom) are reported.

Depth

4 8 12 16 20

W
id

th

3.52 3.56 3.53 3.42 3.46

100 3.43 3.36 3.32 3.22 3.27

6.8 6.4 6.3 6.22 6.31

3.48 3.46 3.52 3.52 3.41

200 3.36 3.27 3.27 3.27 3.21

6.43 6.23 6.16 6.16 6.14

3.51 3.53 3.62 3.50 3.43

300 3.40 3.30 3.33 3.24 3.21

6.47 6.24 6.19 6.14 6.13

3.49 3.47 3.60 3.49 3.53

400 3.34 3.25 3.31 3.25 3.29

6.37 6.16 6.17 6.12 6.15

3.59 3.47 3.55 3.54 3.45

500 3.45 3.26 3.30 3.29 3.23

6.42 6.19 6.17 6.19 6.14

sessed by training different configurations of 𝑓𝚯 on synthetic images 
with mild, medium and extreme noise level. Trained models were eval-

uated on CFD nodal mesh coordinates 𝒙′ and at time points 𝑡′ evenly 
spaced by 0.004 s, effectively oversampling Ω by ≈ ×20 and the time 
interval [0.2–0.399] by ×10. Results are reported in Tables 3, 4 and 5, 
for mild, medium and extreme noise levels, respectively. For mild noise 
levels, all the tested SIREN configurations gave low errors with respect 
to ground truth velocity fields. Networks with greater width and depth 
resulted in only slightly lower mNRSME, vNRMSE and DE. For medium

noise levels, better results were obtained by wider models, but not nec-

essarily by deeper ones. For these noise settings, the best performing

SIREN consisted of 12 layers, each with 500 neurons. In the case of 
extreme noise, wider networks gave worse results than narrower ones, 
while deeper architectures generally produced more accurate velocity 
fields compared to ground truth. Wider models showed a tendency to 
overfit high frequency noise, as shown in Figs. 6.

We chose the single best configuration as the one that minimized 
the sum of vNRMSE, mNRSME and DE for all three noise levels, hence 
7

a SIREN 20 layer deep and with 300 neurons per layer was selected for 
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Table 4

Effect of SIREN number of layers (depth) and number 
of neurons per layer (width) on denoising and super-

resolution using data with medium noise level. In each 
cell values of mNRMSE (top), vNRMSE (middle) and 
DE (bottom) are reported.

Depth

4 8 12 16 20

W
id

th

4.48 4.63 4.65 5.86 5.29

100 4.73 4.92 4.94 6.13 5.61

10.5 10.8 10.9 13.6 12.3

3.98 3.98 4.42 4.49 4.85

200 4.24 4.24 4.72 4.81 5.15

9.66 9.61 10.5 10.7 11.5

3.94 3.94 3.97 4.02 4.20

300 4.20 4.20 4.21 4.30 4.51

9.59 9.56 9.5 9.67 10.21

4.03 3.81 3.89 3.87 4.03

400 4.35 4.09 4.16 4.12 4.28

9.87 9.39 9.48 9.44 9.69

3.95 3.82 3.83 3.85 3.84

500 4.24 4.11 4.08 4.10 4.10

9.62 9.41 9.38 9.33 9.36

Table 5

Effect of SIREN number of layers (depth) and number 
of neurons per layer (width) on denoising and super-

resolution using data with extreme noise level. In each 
cell values of mNRMSE (top), vNRMSE (middle) and 
DE (bottom) are reported.

Depth

4 8 12 16 20

W
id

th

5.31 5.37 5.26 5.30 5.87

100 5.73 5.80 5.73 5.75 6.29

13.01 13.33 12.93 13.02 14.17

5.84 5.99 5.16 5.15 5.21

200 6.62 6.91 5.68 5.67 5.64

14.83 15.11 12.87 12.78 12.84

7.30 7.74 5.40 5.21 5.16

300 8.50 9.05 6.09 5.77 5.63

18.86 19.91 13.41 12.95 12.7

8.86 8.14 7.61 5.56 5.44

400 10.3 9.52 8.89 6.33 6.10

22.34 21.02 19.68 13.98 13.51

9.41 8.07 7.95 7.46 6.50

500 10.9 9.45 9.28 8.65 7.56

23.52 20.88 20.5 19.16 16.66

all downstream comparisons against other methods and on the medical 
dataset.

The trained model with the chosen architecture was also evaluated 
at the training coordinates (𝒙, 𝑡) where noisy velocity observations were 
fitted, obtaining an increase in accuracy compared to the data values 
themselves. Quantitative results are reported in Table 2.

3.2. Case 1: comparison with existing methods

3.2.1. Velocity fields

The SIREN configuration that showed the best results was evaluated 
on the synthetic images with three different levels of noise. Velocity 
fields obtained with our approach were compared against the exist-

ing methods listed in Section 2.6.1. The proposed SIREN gave lower 
mNRSME, vNRMSE and DE for all noise levels (Table 6). Among the 

LITP-based methods, DF-RBF [8] performed better than LITP alone, 
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Fig. 6. Sagittal 2D slice within the ascending aorta (bottom left), together with a zoomed in region shown in pink. Rows 1 and 5: images with extreme noise added; 
rows 2 and 6: CFD solution; rows 3 and 7: results of a SIREN with 20 layers and 500 neurons per layer; rows 4 and 8: results of a SIREN with 20 layers and 300 
neurons per layer. Rows 5 to 8 represent the zoomed in region in contoured in pink.
while DFW provided the worst performance. Qualitatively, all exist-

ing methods produced very similar velocity fields for the mild noise 
level case, showing suboptimal capabilities of reconstructing finer flow 
details (Fig. 7). For the same level of noise, our method was able to 
fit flow details more accurately. Similar results were observed for the 
medium and extreme noise levels. As shown in Figs. 8 and 9, all baseline 
approaches tended to perform denosing by oversmoothing the data. On 
the other hand, our method was able to filter out noise but better pre-

serving finer flow structures.

3.2.2. Wall shear stress fields

The same methodology described in Section 2.5 was applied to the 
8

velocity fields obtained by CFD (ground truth), DFW, DF-RBF, 4D-RBF 
and our best SIREN (20 layers, 300 neurons per layer). Results ob-

tained by the different approach are reported in Table 7. Our method 
gave the lowest mNRSME, vNRMSE and DE, outperforming the others 
for all the tested noise levels. WSS fields computed from the denoised 
and super-resolved velocity field obtained by the different approaches 
can be visualized as 3D colormaps in Figs. 10, 11 and 12 for mild, 
medium and extreme noise levels, respectively. More visible differences 
produced by the different methods can be appreciated for the extreme

noise level (Figs. 12). In this case, all methods, including ours, under-

estimated WSS magnitudes. Our SIREN showed superior performance, 
giving WSS fields in good agreement with CFD-derived results, with 
high WSS magnitudes on the outer curve of the vessel wall, as ex-
pected.
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Fig. 7. Velocity colormaps on a 2D sagittal slice (bottom left). Top row: synthetic measurements with mild noise level at time points evenly spaced by Δ𝑡 = 40 ms. 
Second row: ground truth velocity fields from CFD at time points evenly spaced by Δ𝑡 = 20 ms. Third row: LITP results. Fourth row: DFW results. Fifth row: DF-RBF 

results. Sixth row: 4D-RBF results. Seventh row: our method.

Table 6

Velocity field comparison with existing methods. In each cell values of 
mNRMSE (top), vNRMSE (middle) and DE (bottom) are reported.

LITP DFW + LITP DF-RBF + LITP 4DRBF SIREN

5.88 6.47 5.90 6.91 3.50

mild 4.96 5.40 4.99 5.68 3.24

7.13 7.96 7.2 8.15 6.14

6.11 7.26 6.05 6.79 4.02

medium 5.50 6.18 5.42 6.01 4.30

10.1 10.16 9.78 10.53 9.67

7.06 8.53 6.85 7.57 5.21

extreme 6.96 7.43 6.62 7.04 5.77

14.16 13.01 13.26 13.9 12.95
9

Table 7

WSS field comparison with existing methods. In each cell values of mN-

RMSE (top), vNRMSE (middle) and DE (bottom) are reported.

LITP DFW + LITP DF-RBF + LITP 4DRBF SIREN

8.76 8.65 8.68 18.6 5.62

mild 6.03 6.10 6.00 12.31 4.02

3.43 4.64 3.52 3.84 2.1

8.43 7.93 8.29 18.6 6.53

medium 6.05 5.99 5.96 12.6 4.76

4.94 5.83 4.86 6.85 3.98

10.32 9.06 10.1 19.5 7.82

extreme 7.59 7.01 7.41 13.4 6.04

7.74 8.41 7.5 10.34 7.0
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Fig. 8. Velocity colormaps on a 2D sagittal slice (bottom left). Top row: synthetic measurements with medium noise level at time points evenly spaced by Δ𝑡 = 40 ms. 
Second row: ground truth velocity fields from CFD at time points evenly spaced by Δ𝑡 = 20 ms. Third row: LITP results. Fourth row: DFW results. Fifth row: DF-RBF 

results. Sixth row: 4D-RBF results. Seventh row: our method.

3.3. Case 2: velocity field assessment

Table 8 shows quantitative measurements from raw MRI data and 
reconstructed velocity fields with the proposed SIREN with 20 layers 
and 300 neurons per layer. Overall, our method gave high resolution 
velocity fields that maintained low discrepancies in macroscopic quan-

titative measurements that are considered to be reasonably accurate 
when assessed from unprocessed MRI measurements [13], giving dif-

ferences in mean and maximum flow rate of <5% and underestimating 
reverse flow index (RFI) by 9.4%, as computed in [29]. Qualitatively, 
our approach produced cleaner velocity fields, but maintaining the high 
velocity regions observed at the extrados of the ascending aorta as in 
the measured data (Figs. 13 and 14). From the 3D vector visualization 
(third and fourth rows in Figs. 13 and 14), it can be appreciated how 
the reconstructed velocity vector field kept the swirling patterns formed 
10

in the middle ascending aorta, but filtered out the spurious vector com-
Table 8

Quantitative measurements for Case 2 on raw flow MR mea-

surements and on velocity fields reconstructed with our 
method.

Measured data SIREN Δ%

Mean flow rate [L/min] 4.66 4.88 4.9%

Max flow rate [L/min] 27.7 27.2 1.8%

RFI [%] 21 19 9.4%

ponents in the near-wall regions. Similarly, the DF-RBF and 4D-RBF 
methods (Fig. 15, rows 4 and 5) gave visually denoised velocity fields, 
free from the high-frequency noise features that were observed in the 

unprocessed data, LITP and DFW results (Fig. 15, rows 1, 2 and 3).
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Fig. 9. Velocity colormaps on a 2D sagittal slice (bottom left). Top row: synthetic measurements with extreme noise level at time points evenly spaced by Δ𝑡 = 40 ms. 
Second row: ground truth velocity fields from CFD at time points evenly spaced by Δ𝑡 = 20 ms. Third row: LITP results. Fourth row: DFW results. Fifth row: DF-RBF 

results. Sixth row: 4D-RBF results. Seventh row: our method.

3.4. Case 2: wall shear stress field assessment

WSS fields reconstructed by the SIREN applied on the clinical mea-

surements were consistent with observations made for the synthetic 
case. Specifically, the outer curve of the aneurysm exhibited a notable 
high-velocity region near the wall (Fig. 16). As a consequence of this 
accelerated flow pattern, there was a pronounced elevation in the WSS 
within this particular area. This phenomenon indicates a direct cor-

relation between the high-velocity region and the resultant increased 
WSS, emphasizing the influence of flow dynamics on the local hemo-

dynamic conditions within the aneurysm. Such insights underline the 
significance of considering the spatial relationship between flow char-

acteristics and WSS distribution, particularly in regions characterized by 
abnormal vascular geometries like aneurysms, thereby offering valuable 
implications for understanding and potentially treating such conditions. 
A maximum WSS value of 20 Pa and mean time-averaged WSS (TAWSS) 
11

of 7.5 mPa were found.
4. Discussion

The use of 4D flow MRI in analyzing blood flow in major vessels has 
been widely studied, but the limitations of this imaging technique, such 
as noise and low spatio-temporal resolution have hindered its use in 
more advance velocity-based hemodynamic analysis. For instance, some 
studies have attempted to quantify WSS directly from flow-encoded MR 
images [35,23], evaluating their accuracy at different levels of image 
noise or spatial resolution. Although these approaches enable fast as-

sessment of near-wall quantities, they often tend to underestimate the 
true WSS values with respect to numerical simulation. In pursuit of 
more accurate quantification of WSS fields, researchers have turned to 
increasingly complex numerical simulations of blood flow [11,20]. Al-

though CFD studies are a powerful tool for estimating WSS, they require 
significant computational resources and can take several hours, or even 

days, to run due to their computational cost.
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Fig. 10. Results corresponding to mild noise levels. WSS colormaps on the aortic wall at time points evenly spaced by Δ𝑡 = 20 ms. Top row: WSS computed on 
ground truth velocity fields from CFD. LITP (second row), DFW (third row), DF-RBF (fourth row), 4D-RBF (fifth row), our method (sixth row).
In this study, we proposed an unsupervised learning method based 
on INRs for denoising and SR of velocity fields measured by 4D flow 
MRI. We evaluated our approach on realistic synthetic data with vari-

ous levels of noise and showed the superior performance of our method 
with respect to existing methods in terms of both denoising and spatio-

temporal SR. The proposed approach was able to denoise and super-

resolve 4D velocity data while maintaining the integrity of the domi-

nant flow features.

Among neural network approaches, it is worth mentioning the stud-

ies of Ferdian et al. [10], Rutkowski et al. [28] and [33]. In these works, 
CFD simulations are used to create synthetic 4D flow MRI datasets, so to 
have measurements – ground truth pairs to train convolutional neural 
networks for denoising and SR. Hypothetically, if large realistic training 
data is generated, these approached would be able to learn the denois-

ing and SR tasks, and could generalize to new domains without the need 
of re-training. Nonetheless, by operating convolutions in the image do-

main, these models are usually engineered to super-resolve ×2 or ×4 
in space alone, and they do not allow for precise evaluation of near-
12

wall quantities. Additionally, these methods require full ground truth 
supervision. For this reason, we did not include them in our compari-

son against existing methods. In contrast, an advantage of our approach 
is that the network learns a continuous representation of the velocity 
field which can be evaluated at any space-time location in an arbitrar-

ily shaped domain.

The success of our method relies on two key properties of MLPs. 
First, we leverage SIREN’s spectral bias [5,24] to achieve velocity field 
denoising. This property of dense fully-connected networks prevents 
them from learning high frequency functions. Our experiments on sim-

ulated 4D flow data (Case 1) allowed us to gain insights into the capa-

bilities of SIRENs to denoise velocity observations. When exploiting the 
spectral bias for signal denoising, one should carefully choose model’s 
width and depth such that high frequency noise is filtered out, while de-

sirable fine signal details are maintained. Overall, with mild and medium

noise levels, all the tested combinations of depths and widths were able 
to fit the data, with a tendency of larger models to give slightly lower er-

rors (Tables 3, 4). For extreme noise levels, SIRENs with more than 300 

neurons per layer overcame the spectral bias and overfitted high fre-
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Fig. 11. Results corresponding to medium noise levels. WSS colormaps on the aortic wall at time points evenly spaced by Δ𝑡 = 20 ms. Top row: WSS computed on 
ground truth velocity fields from CFD. LITP (second row), DFW (third row), DF-RBF (fourth row), 4D-RBF (fifth row), our method (sixth row).
quency noise. Once the best architecture was identified, our approach 
outperformed all other tested denoising methods.

The second key strength of the proposed approach relies on the 
fact that the trained MLP fits the velocity vector field as a continu-

ous function of space-time coordinates. In practice, this was achieved 
by building upon the work of Sitzmann et al. [34], who showed how

SIRENs are better suited to fit complicated, feature-rich signals, such as 
natural images and solutions to simple PDEs. The present work is the 
first to adopt SIRENs for fitting 4D velocity measurements. By acting 
pointwise on 4D coordinates, a trained SIREN can be queried at contin-

uous spatio-temporal locations, theoretically providing SR at arbitrarily 
fine spatial and temporal scales. Additionally, by incorporating time as 
an input feature, SIREN’s point-wise outputs are implicitly affected by 
temporal neighboring point features. A limitation of such an approach 
is represented by the fact that velocity measurements are fitted in a 
point-wise manner as in [25]. Indeed, in 4D flow MRI, reconstructed 
images are a spatiotemporally averaged quantities, and a more sophis-

ticated approach should account for such averaging by performing a 
13

convolution of the MRI system point spread function with the com-
plex phase contrast data [27]. Interestingly, the trained SIREN gave 
errors that were lower than the errors of the fitted data values them-

selves, implying that the method increases the accuracy at the training 
points (Table 2). This finding implies that the proposed method acts as 
a denoiser at both high and low-resolutions, hence the denoising perfor-

mance can be attributed to the implicit spectral bias of the model rather 
than its smooth interpolation capabilities. In principle, our approach is 
closely related to the formulation introduced by PINNs [25], with the 
main difference lying in the definition of the loss function. A more so-

phisticated extension of our coordinate-based approach is represented 
by Fathi et al. [9], who achieve SR and denoising of 4D flow MRI by tak-

ing into consideration the underlying physics of the problem. Instead, 
we train our models only using a data fidelity term, neglecting physi-

cal priors. Despite representing a simplification with respect to [9], our 
work clearly shows that when dealing with coordinate-based networks 
and high-dimensional noisy data, the spectral bias of the model itself 
introduces some regularization, hence, future work on PINNs dealing 
with similar data will have to acknowledge this aspect, discerning be-
tween the regularization provided by the physics vs. the one provided 
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Fig. 12. Results corresponding to extreme noise levels. WSS colormaps on the aortic wall at time points evenly spaced by Δ𝑡 = 20 ms. Top row: WSS computed on 
ground truth velocity fields from CFD. LITP (second row), DFW (third row), DF-RBF (fourth row), 4D-RBF (fifth row), our method (sixth row).
by the architecture. Our approach leverages the concept introduced by 
the seminal work of [41], showing how a neural network can be used as 
a prior with excellent results in inverse problems such as denoising and 
SR. However, it is important to note that a limitation of the proposed 
approach is that it cannot correct all errors that are typically present in 
4D flow MRI data. Essentially, our method performs regression of vector 
data in 4D, and it cannot add high frequency flow details that are lost 
during the MRI reconstruction process. Additionally, the capabilities of 
our method to correct for velocity aliasing errors are still unexplored. 
The introduction of N-S residuals in differential form in the loss func-

tion could potentially lead to more physically consistent velocity fields, 
but would significantly slow down the training process. Moreover, a su-

pervised approach trained on ground truth CFD data could potentially 
overcome this limitation. In the present study, we were interested in 
demonstrating the feasibility of a method that could potentially be ap-

plied to real medical scenarios, where speed of execution is mandatory. 
14

For the TAA patient (Case 2), using an NVIDIA A100 graphics card, our 
method took approximately 4 minutes to train and less than 2 seconds 
to evaluate at a fine spatio-temporal resolution.

In contrast to most data-based approaches, the devised method re-

quires the definition of a bounded domain Ω × [𝑡𝑎, 𝑡𝑏] (Section 2.2). On 
one hand, this choice represents a limitation of our workflow, entail-

ing longer processing times. On the other hand, precise definition of a 
smooth vessel wall surface enables robust computation of WSS, a clin-

ically important hemodynamic biomarker. Results on synthetic data 
showed good quantitative and qualitative agreement between predicted 
and reference CFD data (Table 7 and Figs. 10, 11, 12). Nonetheless, 
when comparing WSS fields obtained with different approaches, it is 
worth mentioning that other baseline methods, such as LITP, DFW, and 
DF-RBF suffer from voxel-grid aliases. On the other hand, 4D-RBF and 
the proposed SIREN eliminate this type of aliases, representing an im-

portant advantage compared to traditional interpolation methods.

An interesting result of our analysis on model’s architecture revealed 
that, when trained on data with extreme noise levels, wider and deeper 

models overfitted noise and produced worse results. During training of 
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Fig. 13. Velocity magnitude colormaps (rows 1 and 2) and velocity vectors (rows 3 and 4) for Case 2 on a sagittal 2D slice (bottom left). Rows 1 and 3: 4D flow 
measurements, rows 2 and 4: SIREN results.

Fig. 14. Velocity magnitude colormaps (rows 1 and 2) and velocity vectors (rows 3 and 4) for Case 2 on an axially oriented 2D slice (bottom left). Rows 1 and 3: 4D 

flow measurements, rows 2 and 4: SIREN results.

the largest SIREN width 500, depth 20) on data with extreme noise levels, 
we observed an initial decrease and subsequent increase of the testing 
loss function (Fig. 17). While it is true that a lower error would have 
been obtained by stopping training earlier, in practice this approach is 
not feasible. In fact, when applying our method in real clinical settings, 
one cannot rely on ground truth data to compute the test loss.

Results on real medical data revealed a high WSS region on the outer 
curvature of the ascending aorta (Fig. 16), with most values ranging 
from 0 to 15 Pa. These results are in good agreement with a recent 
study on TAA biomechanics [32], who reported maximum WSS val-

ues of 10.18 ± 4.14 Pa for a cohort of 10 patients. However, it is 
worth noting that any interpolation of the coarse 4D flow data is un-
15

likely to produce exact WSS fields; the improvement in WSS accuracy 
can be thought of as a consequence of the reduced noise representa-

tion compared to other existing methods. Furthermore, in our analyses, 
we considered a static 3D segmentation of the aortic wall. Despite a 
precise overlap was qualitatively observed with the velocity magnitude 
image (Fig. 4), for cases where wall motion is more evident, a better 
approach would involve a dynamic segmentation of the vessel, as this 
has been shown to have a significant impact on hemodynamic analysis 
[43]. Moreover, given the limited resolution of 4D flow MRI, determin-

ing the aortic wall position itself from this imaging modality can be 
challenging. In this work, the uncertainty associated with the definition 
of the boundary was not quantified; this aspect should be addressed by 
future studies focusing on WSS assessment. In principle, adopting an 

approach similar to [17] could allow for a joint optimization of flow re-
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Fig. 15. Velocity magnitude colormaps on a 2D sagittal slice (bottom left). Top row: clinical 4D flow measurements. Second row: LITP results. Fourth row: DFW 
results. Fifth row: DF-RBF results. Sixth row: 4D-RBF results. Seventh row: our method.
construction and segmentation. Even though more detailed analyses are 
needed on the use of neural networks for in vivo WSS estimation, our re-

sults indicate that velocity fields produced by our method are suitable 
for extraction of derived biomarkers that are affected by noise.

Ideally, when applying our method on clinical scans, one could 
identify the SNR of the 4D flow images and then choose the most appro-

priate SIREN architecture. However, quantifying the SNR in clinical 4D 
flow scans is quite challenging as it is usually performed by taking the 
difference of two symmetrically flow-encoded magnitude images, which 
can be expected to have similar signal magnitude. Future research ef-

forts could be devoted at improving the feasibility of SNR quantification 
from flow-encoded images, enhancing the effectiveness and applicabil-

ity of the proposed approach.

4.1. Conclusions

In this work we showed the feasibility of SIRENs to represent com-

plex, high dimensional blood flow velocity fields measured by 4D flow 
MRI. By training on low resolution coordinates, our method is quick to 
execute for new cases and easy to implement. By carefully tuning our

SIREN architecture, we exploit the spectral bias to obtain a functional 
representation of our data with reduced noise, outperforming widely 
adopted existing solutions. Our method provides continuous velocity 
fields that can be queried at arbitrary spatio-temporal locations, effec-
16

tively achieving 4D super-resolution.
The code to reproduce the described methodology can be found at 
https://github .com /saitta -s /INRs -4DFlowMRI.
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Fig. 16. WSS magnitude colormaps on the 3D aortic surface calculated from 4D flow data (row 1) and from SIREN results (row 2). WSS vectors on the 3D aortic 
surface calculated from 4D flow data (row 3) and from SIREN results (row 5). WSS magnitude colormaps on the unwrapped surface obtained by following [2]

calculated from 4D flow data (row 5) and from SIREN results (row 6).
Fig. 17. Training and testing loss functions during training of a SIREN with 20 
layers and 500 neurons per layer on data with exteme noise levels.
17
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