This paper presents a critical and detailed overview of experimental techniques for the extraction of the thermal resistance of bipolar transistors from simple DC current/voltage measurements. More specifically, this study focuses on techniques based on a thermometer, i.e., the relation between the base-emitter voltage and the junction temperature. The theory behind the techniques is described with a unified and comprehensible nomenclature. Advantages, underlying approximations, and limitations of the methods are illustrated. The accuracy is assessed by emulating the DC measurements with PSPICE electrothermal simulations of a transistor model, applying the techniques to the simulated currents/voltages, and comparing the extracted thermal resistance data with the values obtained from the target formulation embedded in the transistor model. An InGaP/GaAs HBT and an Si/SiGe HBT for high-frequency applications are considered as case-studies.

A Critical Review of Techniques for the Experimental Extraction of the Thermal Resistance of Bipolar Transistors from DC Measurements—Part I: Thermometer-Based Approaches

Codecasa, Lorenzo
2023-01-01

Abstract

This paper presents a critical and detailed overview of experimental techniques for the extraction of the thermal resistance of bipolar transistors from simple DC current/voltage measurements. More specifically, this study focuses on techniques based on a thermometer, i.e., the relation between the base-emitter voltage and the junction temperature. The theory behind the techniques is described with a unified and comprehensible nomenclature. Advantages, underlying approximations, and limitations of the methods are illustrated. The accuracy is assessed by emulating the DC measurements with PSPICE electrothermal simulations of a transistor model, applying the techniques to the simulated currents/voltages, and comparing the extracted thermal resistance data with the values obtained from the target formulation embedded in the transistor model. An InGaP/GaAs HBT and an Si/SiGe HBT for high-frequency applications are considered as case-studies.
2023
bipolar transistor model
gallium arsenide (GaAs)
heterojunction bipolar transistor (HBT)
nonlinear thermal effects
silicon-germanium (SiGe)
thermal resistance
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1260427
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact