Across continental Africa, more than 300 new hydropower projects are under consideration to meet the future energy demand that is expected based on the growing population and increasing energy access. Yet large uncertainties associated with hydroclimatic and socioeconomic changes challenge hydropower planning. In this work, we show that only 40 to 68% of the candidate hydropower capacity in Africa is economically attractive. By analyzing the African energy systems' development from 2020 to 2050 for different scenarios of energy demand, land-use change, and climate impacts on water availability, we find that wind and solar outcompete hydropower by 2030. An additional 1.8 to 4% increase in annual continental investment ensures reliability against future hydroclimatic variability. However, cooperation between countries is needed to overcome the divergent spatial distribution of investment costs and potential energy deficits.

Declining cost of renewables and climate change curb the need for African hydropower expansion

Carlino, Angelo;Giuliani, Matteo;Castelletti, Andrea
2023-01-01

Abstract

Across continental Africa, more than 300 new hydropower projects are under consideration to meet the future energy demand that is expected based on the growing population and increasing energy access. Yet large uncertainties associated with hydroclimatic and socioeconomic changes challenge hydropower planning. In this work, we show that only 40 to 68% of the candidate hydropower capacity in Africa is economically attractive. By analyzing the African energy systems' development from 2020 to 2050 for different scenarios of energy demand, land-use change, and climate impacts on water availability, we find that wind and solar outcompete hydropower by 2030. An additional 1.8 to 4% increase in annual continental investment ensures reliability against future hydroclimatic variability. However, cooperation between countries is needed to overcome the divergent spatial distribution of investment costs and potential energy deficits.
2023
File in questo prodotto:
File Dimensione Formato  
Carlino2023_science.pdf

Accesso riservato

: Publisher’s version
Dimensione 1.27 MB
Formato Adobe PDF
1.27 MB Adobe PDF   Visualizza/Apri
11311-1259320_Carlino.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 2.79 MB
Formato Adobe PDF
2.79 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1259320
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 1
social impact