
 

Vrije Universiteit Brussel

Declining cost of renewables and climate change curb the need for African hydropower
expansion
Carlino, Angelo; Wildemeersch, Matthias; Chawanda, Celray James; Giuliani, Matteo; Sterl,
Sebastian Hendrik; Thiery, Wim; Van Griensven, Ann; Castelletti, Andrea
Published in:
Science

DOI:
10.1126/science.adf5848

Publication date:
2023

License:
Unspecified

Document Version:
Accepted author manuscript

Link to publication

Citation for published version (APA):
Carlino, A., Wildemeersch, M., Chawanda, C. J., Giuliani, M., Sterl, S. H., Thiery, W., Van Griensven, A., &
Castelletti, A. (2023). Declining cost of renewables and climate change curb the need for African hydropower
expansion. Science, 381(6658), [eadf5848]. https://doi.org/10.1126/science.adf5848

Copyright
No part of this publication may be reproduced or transmitted in any form, without the prior written permission of the author(s) or other rights
holders to whom publication rights have been transferred, unless permitted by a license attached to the publication (a Creative Commons
license or other), or unless exceptions to copyright law apply.

Take down policy
If you believe that this document infringes your copyright or other rights, please contact openaccess@vub.be, with details of the nature of the
infringement. We will investigate the claim and if justified, we will take the appropriate steps.

Download date: 01. ott. 2024

https://doi.org/10.1126/science.adf5848
https://cris.vub.be/en/publications/declining-cost-of-renewables-and-climate-change-curb-the-need-for-african-hydropower-expansion(1e467daf-d412-4e0e-9bd4-643922c58deb).html
https://doi.org/10.1126/science.adf5848


Declining cost of renewables and climate change curb
the need for African hydropower expansion

Angelo Carlino,1,2 Matthias Wildemeersch,2

Celray James Chawanda3, Matteo Giuliani,1 Sebastian Sterl,3,4

Wim Thiery,3 Ann van Griensven,3 Andrea Castelletti1∗

1Department of Electronics, Information, and Bioengineering,
Politecnico di Milano, Milano, Italy

2International Institute for Applied Systems Analysis, Laxenburg, Vienna
3Department of Hydrology and Hydraulic Engineering,

Vrije Universiteit Brussel, Brussels, Belgium
4World Resources Institute, Regional Hub for Africa, Addis Ababa, Ethiopia

∗To whom correspondence should be addressed; E-mail: andrea.castelletti@polimi.it.

In continental Africa, more than 300 new hydropower projects are under con-

sideration to meet the future energy demand resulting from the growing pop-

ulation and increasing energy access. Yet, large uncertainties associated with

hydroclimatic and socioeconomic changes challenge hydropower planning. Here,

we show that only 40-68% of the candidate hydropower capacity in Africa is

economically attractive. By analyzing the African energy systems’ develop-

ment from 2020 to 2050 for different scenarios of energy demand, land-use

change, and climate impacts on water availability, we find that wind and solar

out-compete hydropower by 2030. An additional 1.8-4% increase in annual

continental investment ensures reliability against future hydroclimatic vari-
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ability. However, cooperation between countries is needed to overcome the

divergent spatial distribution of investment costs and potential energy deficits.

One Sentence Summary:

The window for economically competitive African hydropower development over the next three

decades might be rapidly closing.

Over the next few decades, the African energy systems are expected to undergo profound

changes. The total electricity demand is predicted to increase by 5-6% per year over the next ten

years and until 2050 (1–3) driven by the sustained population growth, mainly in Sub-Saharan

Africa (4), and the continuous infrastructural investments aimed at improving energy access and

living standards, especially in the least developed areas (5,6). This increasing demand, together

with the need to mitigate and adapt to anthropogenic climate change (7), will shape the future

development of the African energy systems. The use of low-carbon energy sources (3,8,9) will

gradually lessen the historical dependency on fossil fuels, which are abundant in the continent

(10). In the short-term, annual investments of 190 billion USD are required to ensure such a

successful energy transition, with more than two-thirds of this financial investment allocated to

clean energy sources (3). Among these, hydropower has historically been favored as a low-cost

source of baseload power (11) and current policies imply a substantial infrastructural expansion

(12). Moreover, hydropower is an attractive component of the future African power system

owing to its ability to balance grid load in support of intermittent renewable electricity sources

(13–15), and because the remaining untapped potential in the continent is relatively large (11).

According to plans of national and regional agencies, more than 300 new hydropower projects

are currently committed, planned, or under consideration over the African continent (16). These

projects amount to a total of around 100 GW of additional hydropower capacity, with 168 large

(≥ 100 MW) projects accounting for almost 90 GW (16).

2



Nevertheless, climate change makes future hydropower generation uncertain (17) and in-

creases the risk of cascading power system failures across countries and power pools (18), likely

jeopardizing its potential to foster resilience (19). Moreover, capacity expansion projections are

linked to future energy demand, technology costs, and climate policy, which are fundamentally

uncertain factors (20, 21). The excessive reliance on hydropower in many Sub-Saharan coun-

tries is currently a source of concern and a reason for caution in additional hydropower invest-

ment (22). Further doubts are cast on hydropower capacity expansion (23) when socioeconomic

and environmental impacts of hydropower are analyzed, such as population displacement (24),

reduced sediment connectivity (25), loss of biodiversity (26), and competition with other water

uses, most importantly with agriculture (21).

Given the scale of future infrastructure development, the socioeconomic and environmental

impacts of hydropower expansion, and the need to bridge continental as well as regional power

system development, it is crucial to identify the hydropower projects that should be prioritized

and the ones that should be discarded based on the cost-optimal power system capacity expan-

sion. In fact, the selection and sequencing of the hydropower infrastructure required in light of

energy, socio-economic, and technological development is a critical first step. Further research

should evaluate the ensuing social, climatic, and environmental impacts on the alternatives of

interest to support final planning decisions. To what extent do the planned hydropower expan-

sion and its spatial distribution over the main river basins change depending on socioeconomic,

land-use, and climatic uncertainties? What are the costs of climate-proofing the energy system,

and how are these costs spatially distributed compared to power deficits driven by hydroclimatic

variability?

Here, we build an integrated modeling framework to examine the role of hydropower in

a sustainable energy transition that is cognizant of hydroclimatic and land-use change, socio-

economic projections, and climate policy options. While previous studies on strategic dam
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planning (27–30) rarely include the power system and rarely go beyond the basin scale (31,32),

our analysis examines the full energy portfolio at the continental scale. Specifically, we consider

cross-basin interactions over the power grid (33), hydropower projects proposed at the river

basin and national scale, as well as socioeconomic and land-use projections. By doing so, we

limit undesirable outcomes resulting from the integration of national, regional, and continental

policies across multiple sectors and scales (34).

Our results show that hydropower will have lost its dominant role in Africa’s renewable

electricity mix by 2050, with solar and wind representing at least 29-38% and 8-12% of gener-

ation, respectively, while hydropower’s share shrinks to 7-14% under all considered scenarios.

Between 40% and 68% of the proposed new hydropower capacity, or, in other words, between

120 and 251 of the 367 proposed projects could potentially be cost-optimal, and nearly no new

hydropower plants are recommended after 2030. While the viability of hydropower expansion

in the Zambezi River basin is dependent on the scenario, many of the proposed projects for the

Nile, Congo, and Niger remain economically viable under all considered scenarios. Finally,

guaranteeing the reliability of the energy system against hydroclimatic risks only requires re-

allocating some of the investments in hydropower towards other sources, especially solar and

firming technologies, with a small increase in annual capital investments. Yet, the need for

additional investment and the risk of shortages are often located in different regions. As a

consequence, we highlight the importance of transnational governance measures to guarantee

climate-resilient energy systems.
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Sequencing hydropower projects within power capacity expansion To obtain plans for hy-

dropower project sequencing and associated power capacity expansion, we set up a multi-scale,

multi-sector modeling approach (Fig. S1). We combine input data from three main datasets.

First, we use the Shared Socioeconomic Pathways (SSPs) database (35) to obtain projected en-

ergy demands. Second, we rely on the African Hydropower Atlas (16) to characterize each

hydropower project in the OSeMOSYS-TEMBA model (36). Third, to coherently account for

the co-evolution of the climatic and the socioeconomic system, we use the Inter-Sectoral Impact

Model Intercomparison Project (ISIMIP2b) scenarios (37) to represent the future hydrological

regime resulting from changes in the climate system and in the land-use sector. Natural climate

variability is considered using a median and a very dry hydrological scenario. These corre-

spond to the 50th and 5th percentile of the distribution of simulated annual average generation

which is obtained by simulating a distributed hydrological model under an ensemble of climate

projections from 2020 to 2050 (see Methods).

We use the model to study the expansion trajectory of the African energy systems over the

period 2020-2050 at the continental scale assuming centralized decision-making. We consider

three socioeconomic scenarios aggregating socioeconomic, land-use, and climatic assumptions:

(i) a sustainable development scenario, using a carbon emission constraint compatible with a

2 °C long-term warming, according to SSP1-2.6; (ii) a scenario designed to focus on hetero-

geneous economic development among regions not associated with climate policy efforts, ac-

cording to SSP4-6.0; and (iii) a fossil-fueled economic growth scenario associated with high

greenhouse gas emissions, according to SSP5-8.5. For each socioeconomic scenario, we con-

sider the median (MED) and very dry (DRY) hydrological scenario. We use the first to represent

traditional hydropower planning and the second to stress-test the power system under worst-case

hydroclimatic conditions. Indeed, these two scenarios can be seen as describing different risk-

preparedness targets (risk-neutral and risk-averse, respectively) with respect to the uncertainty
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associated with hydroclimatic variability. For each considered scenario, we optimize the power

capacity expansion for each energy source and the sequencing of the proposed (i.e., planned,

committed, and candidate) hydropower projects collected in the African Hydropower Atlas.

Moreover, we examine the cost-reliability trade-off at different spatial scales, which would oth-

erwise remain hidden behind the large-scale formulation of the least-cost capacity expansion

problem.
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Cost-effectiveness of solar energy avoids the need for long-term hydropower expansion

Our model results show that at least one-third of the new hydropower capacity proposed at the

regional and country level is not cost-optimal across continental Africa, and this result holds

under all considered scenarios (Fig. 1). Under ensemble median hydrologic change (i.e., under

the MED scenarios), new hydropower installed capacity ranges between 52 GW under SSP4-6.0

and 66 GW under SSP1-2.6, while these values drop to between 39 GW (SSP4-6.0) and 47 GW

(SSP1-2.6) when considering dry hydrology conditions under the risk-averse robust approach

(i.e., under the DRY scenarios), meaning that more than half of the proposed capacity is not

economically viable at the continental scale. In all these plans, two large projects are responsible

for more than 17 GW of viable capacity: the soon to be completed 6.4 GW Grand Ethiopian

Renaissance Dam and the 11.0 GW Inga 3 candidate project in the Democratic Republic of the

Congo. In general, the SSP1-2.6 scenario consistent with a warming of 2 °C at the global level

requires more hydropower than other scenarios due to the reduced reliance on fossil fuels. To

isolate the impact of climate change on hydropower expansion, we examine capacity expansion

strategies considering hydropower generation based on observations from 1986 to 2005. We see

that climate change is particularly affecting the scenarios with the largest hydropower expansion

and it is responsible for a reduction of 9 GW (SSP1-2.6) and 8 GW (SSP5-8.5) (Fig. S2).As we

consider the salvage value of infrastructure at the end of the planning horizon corresponding

with the remaining operational life, our results remain consistent when we extend the horizon

until 2070 (Fig. S3).

Under all socioeconomic and hydrological scenarios, at least half of the additional hy-

dropower capacity is installed in the period 2020-2030 (Fig. 1a-c), with the window in which

hydropower can still compete economically with solar PV rapidly closing. Beyond 2030, the

share of new investments in solar power increases substantially, and further development of hy-

dropower in Africa is unlikely to be cost-effective (Fig. 2). While hydropower could still be
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competitive with solar PV until the end of the current decade, the often-witnessed build time and

cost overruns for hydropower projects (38) may even preclude large-scale hydropower expan-

sion before that time, paving the way for further solar PV deployment. In addition, all capacity

investments are growing rapidly in the decades following 2030, thus further diminishing the

role of hydropower in the future energy portfolio (39). Similarly, given the large expansion of

the power system in the next decades, the decline of hydropower is substantial also in the total

capacity share (Fig. S4). The gap is even more pronounced for the DRY scenarios where more

than half of the proposed capacity is not economically optimal resulting in higher investments

in solar power (bottom row in Fig. 2). Solar power becomes a more competitive option displac-

ing more impacted hydropower projects. In SSP1-2.6, an important role is played by nuclear

power by mid-century, which is used to further reduce investment in fossil fuel power sources

and represents an important share of generation in 2050 (Fig. S5). Contrary to SSP1-2.6, where

coal becomes almost absent, under SSP4-6.0 and SSP5-8.5 it still contributes around 40% of

the generation mix by mid-century with more than 2000 TWh under SSP5-8.5 (Fig. S5). For

what concerns the flexibility required in the power system to balance the reduced output of solar

plants at night, hydropower comes after biomass and fossil fuels, and wind has a complemen-

tary diurnal profile to solar as well (Fig. S6). As a consequence, our results do not suggest

hydropower still being a major provider of firm generation and flexibility by mid-century.
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Location and drivers of hydropower expansion Most of the planned African Hydropower

projects concentrate in four major river basins, i.e., Nile, Congo, Zambezi, and Niger, which ac-

count for around 66% of the total potential (16). Across the socioeconomic and risk-preparedness

scenarios, the cost-optimal dam portfolio varies substantially, even though some projects are

consistently selected (Fig. S7). A robust finding over the considered scenarios and river basins

is that less hydropower is installed in the DRY capacity expansion scenarios, and under SSP4-

6.0 and SSP5-8.5 (Fig. 3). The Congo River basin is consistently cost-optimal for around half

of its potential through the Inga 3 Dam, accounting for 11 GW in the Democratic Republic of

Congo and built in all the scenarios. Half of the proposed potential for the Nile River basin is al-

ways cost-optimal, mainly in Ethiopia and Uganda, up to 80% in SSP5-8.5 with MED capacity

expansion. The hydropower expansion in the Zambezi River basin is instead very uncertain and

strongly dependent upon the considered scenario, ranging from 30% (SSP5-8.5) to 70% (SSP1-

2.6) of the proposed capacity in the MED scenarios and between 13% (SSP4-6.0, SSP5-8.5)

and 39% (SSP1-2.6) in the DRY scenarios. Finally, the cost-optimal hydropower potential in

the Niger River basin is between 86% (SSP4-6.0) and 91% (SSP1-2.6) of the proposed capacity

for the MED scenarios, and it is reduced to between 53% (SSP4-6.0) and 83% (SSP5-8.5)in

the DRY scenarios. These projects are located mainly in Nigeria, a potential hotspot of hy-

dropower development. For what concerns the remaining smaller basins, the development of

projects varies significantly from 38% (SSP4-6.0) to 71% (SSP1-2.6) of their total capacity in

the MED capacity expansion scenarios, and between 24% (SSP4-6.0) and 32% (SSP1-2.6) for

the DRY capacity expansion scenarios.

Given these results, we can partially trace back the cost-optimal power expansion decisions

to the characteristics of the proposed hydropower projects. High average capacity factors and

high capacity are usually good indicators of cost-optimality (Fig. 4). Indeed, the higher the

capacity, the lower the capital cost of new hydropower (40), even though the probabilities of
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delays and cost overruns increase too (41). Furthermore, the higher the average capacity fac-

tor, the higher the annual generation of a power plant. The construction of new hydropower

projects is not sensitive to the inter-annual variability in the capacity factor. On the other hand,

spatial and energy system constraints, such as transmission line capacity and proximity to more

economically favorable hydropower projects, enable a full understanding of the cost-optimal

power system development. This is, for example, the case of projects in the Zambezi basin in

Zambia, a region well connected to the Democratic Republic of the Congo. The development

of the Inga 3 Dam in the latter allows for substantial cheap electricity exports to neighboring

countries, reducing the viability of domestic hydropower expansion in Zambia.
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The regional distribution of costs and deficits requires cooperation It is currently unclear

how the magnitude of drought-induced power deficits compares with the size of additional

investment costs required to climate-proof the energy system (i.e., to guarantee demand satis-

faction under dry hydrological conditions). For this reason, we stress-test the capacity expan-

sion plans MED, obtained under median hydrology, by simulating it under dry hydrology to

estimate the potential deficit that can occur. The observed generation deficits should be un-

derstood as the result of planning the power capacity expansions for each source, not only for

hydropower, without explicitly accounting for hydroclimatic variability. The reported deficits

present a worst-case scenario since safety mechanisms such as reserve margins are supposed

to be in place to reduce the probability of occurrence of these events. The DRY capacity ex-

pansion plans can remove this risk with a capital cost increase between 1.8% (SSP5-8.5) and

4% (SSP1-2.6) in annual capital investments at the continental level under all the socioeco-

nomic scenarios. Yet, at the country level, the cost increase and potential deficit are unevenly

distributed and vary widely across the scenarios (Fig. 5).

Generally, reduced hydropower generation requires backing up with existing, mainly fossil-

based technologies, or with additional capacity. This additional capacity is typically solar PV

under cost-optimal expansion scenarios, especially under SSP1-2.6 in which the reliance on

fossil fuels for power generation is constrained. Consequently, spatial planning of renewable

power plants’ deployment will be affected as well.

For many regions not dependent on hydropower, there is no difference between the two plans

as they are not affected by deficits or additional costs induced by hydrological variability (North-

ern Africa and South Africa). Nonetheless, power pools strongly dependent on hydropower,

such as the Southern, the Eastern, and the Western African Power Pools, are more subject to

cost increase and deficit. Under SSP1-2.6, West Africa is affected by generation deficit events

that require substantial capital investments to ensure reliability (e.g., Senegal, Guinea-Bissau,
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Ghana, and Togo). On the other hand, the power deficits in Nigeria and Burkina Faso require a

modest increase in annual capital cost. In the other scenarios, the power deficit affects mostly

Mali, Niger, and Benin, but the costs to achieve reliability remain low in all the power pool.

For what concerns the Eastern African Power Pool, Ethiopia, Tanzania, Uganda, Rwanda, and

South Sudan are most at risk of power outages induced by hydroclimatic variability. All these

countries require significant investments to reduce this risk, while additional economic efforts

will be required from Egypt, Sudan, and Kenya, especially in the case of SSP1-2.6. Concerning

the Southern African Power Pool and scenario SSP1-2.6, Zambia, Namibia, and Mozambique

remain most vulnerable to droughts. Zambia is particularly at risk as the power deficit would

be around 13%, which could be mitigated with an 11% increase in annual capital investment.

In addition to the above-mentioned countries, also Angola, Zimbabwe, and the neighboring

Democratic Republic of the Congo, in the Central African Power Pool are required to increase

their investments to climate-proof their energy system to a substantial extent. Under the other

scenarios, Zambia remains always exposed to drought-related power outage risk, together with

Namibia, whose cost to ensure reliability remains lower. In all scenarios, a generation deficit

is observed if power trade is not allowed between countries, underscoring the importance of

cooperation and political stability in the region (Fig. S8).
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Fig. 5. Country-level cost-deficit trade-offs. Maximum annual power deficit as a percentage
of demand over the period 2020-2050 obtained from simulation of the MED capacity expansion
plan under dry hydrology. The additional cost of eliminating the power deficits is derived as
the percentage increase derived from the annualized capital costs of the MED and the DRY
capacity expansion plan. Their joint value is reported for each country in the maps using the bi-
dimensional color scale visible in the legend, with the columns that correspond to SSP scenarios
examined.
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Discussion As African power demand grows, especially in Sub-Saharan Africa, the remain-

ing untapped hydropower potential represents a cheap, clean energy source, which explains the

large number of infrastructural projects currently under consideration. However, as costs as-

sociated with solar and wind power generation continue to decline, the historical reliance on

hydropower of many Sub-Saharan African countries might come to an end. Solar and wind

power are expected to become the primary power sources in 2050 representing 50% of the elec-

tricity mix of the continent in the sustainable development scenario compatible with a 2°C long

term warming (SSP1-2.6) and always representing at least 50% of new installed capacity in the

next three decades under all scenarios considered. Even under the SSP1-2.6 scenario which

pushes for extensive renewable capacity expansion, no more than 67% of proposed hydropower

capacity is cost-optimal with this percentage shrinking to 48% under the assumption of aver-

sion to hydroclimatic risk. Project delays and cost overruns might further favor solar and wind

projects making hydropower development even less competitive from an economic perspec-

tive (42). Yet, in the short term, especially in the transition to a final net zero configuration,

hydropower represents a cheap alternative to avoid the high costs of installing solar and wind at

the current level of technological maturity and to displace fossil fuels, mainly coal. The Nile,

Congo, and Niger River basins provide reliable hydropower generation. Yet, the development

of projects in these regions needs to be accompanied by investment in grid capacity in order

to reap all the benefits of large hydropower. Climate-proofing the energy system against hy-

droclimatic variability requires reducing investment in hydropower and investing in additional

solar, wind, and firming capacity, in particular in the scenarios where emissions are constrained.

These additional costs are not necessarily distributed uniformly or fairly across the countries,

highlighting the need for coordination and incentives mechanisms to support capacity expansion

plans which are robust to climate change impacts.

Through the reduction in economically viable hydropower capacity associated with the
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declining cost of wind and solar, technological innovation helps reduce pressure on riverine

ecosystems and small communities in proximity of proposed impoundments and further down-

stream as far as the impacts of these changes propagate (43).

Indeed, previous research on the hydropower’s social and environmental trade-offs (25, 27, 30)

and the effects of environmental risks on the financial performance of this infrastructure (44)

has suggested caution in construction of new projects. Introducing these factors in our model-

ing framework is likely to further reduce the space for hydropower in future energy systems.

Analyses at the river basin level remain complementary to our analysis and might be better

tailored to address such concerns. However, additional research and development of new meth-

ods are needed to connect local, regional, and continental scales for a robust planning of water

and energy systems (34). Similarly, greenhouse gas emissions from reservoirs (30, 45–47) are

a deterrent for hydropower capacity expansion, in particular in tropical areaswhere life cycle

emissions associated with new dams might be comparable to the ones of fossil fuel power

sources (48, 49). Accounting for this factor will likely further promote the expansion of wind,

solar, and other carbon-neutral technologies.

On the other hand, we are not able to fully capture the contribution of hydropower projects

to ancillary services such as frequency regulation and improved renewable integration associ-

ated with the rapid ramp-up of power output. While these services are rarely considered in

hydropower planning, their importance will rise as more wind and solar power are added to

the grid, potentially affecting our results. Moreover, electricity generation is not always the

main purpose for which water reservoirs are built. If some of the reservoir hydropower projects

were to be associated with other needs (e.g., agriculture, flood control, drinking water supply),

cross-sectoral interactions could improve their economic performance and make them attrac-

tive investments. In this case, reservoir greenhouse gas emissions should not be attributed to

electricity generation only, but the exact attribution of greenhouse gas emissions to the different
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sectors remains a complex issue.

Governance and political stability are key in ensuring sustainable exploitation of the eco-

nomically viable hydropower potential, particularly in transboundary river basins (50). The

Nile and the Niger River basins, identified as hotspots of hydropower development, are high-

risk areas due to their transboundary nature in regions of political instability and presence of

armed conflict (51). Implementation of cooperation schemes is crucial to reduce tensions and

provide water and energy security in these areas (13, 15, 52–54).

In a broader sense, cooperation and governance are fundamental to allow all African coun-

tries to switch their focus from energy independence to energy security (55). In this regard,

establishing power pools and the African Clean Energy Corridor has been crucial for energy

governance. These mechanisms and investments paved the way for increased energy security

in the continent (56). To prepare for the impacts of dry years, investment in alternative power

sources is required, even in locations that might not be directly impacted by generation deficits.

Understanding the consequences of interconnected power systems can therefore promote the

design of agreements and policy interventions fostering energy security and resilience in the

face of hydroclimatic change. Growing evidence motivates concerns about the increased risk

of conflict and instability associated with the growing impacts of climate change (57). Govern-

ments and power pools must prepare for stressful contexts where local strategies do not match

large-scale cost-optimal development. To confront the friction between coordinated and decen-

tralized decision-making levels, mechanisms building on incentive schemes and side payments

need to be designed. In this conundrum, our results can inform future research to ensure multi-

scale coordination for energy security and sustainable hydropower development in the African

continent.
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Materials and Methods

Overview Our analysis is based on an open-source energy system model, which we extend

with publicly available datasets compiling projections of socioeconomic development, land-

use, climate change and natural variability impacts, and hydropower generation. A schematic

overview of the model used to obtain the results discussed in the article is reported in Figure

S1. The modeling framework is used to study the least-cost African power capacity expansion

to meet future energy demand and the implications for the hydropower sector from 2020 to

2050. Scenarios available through phase 2b of the Inter-Sectoral Impact Model Intercomparison

Project 2b (ISIMIP2b) (37) are used to coherently consider future final energy demands, land-

use changes, and future climate impacts on the hydrological cycle. These inputs inform the

OSeMOSYS-TEMBA model (59) modified to account for each existing and future hydropower

project in continental Africa. As model output, we obtain the least-cost capacity expansion

and generation mix to meet the demand for each of the scenarios considered, including the

sequencing of new hydropower projects. These power capacity expansion plans are evaluated

based on different metrics such as costs and generation deficit, that are obtained by simulations

over different hydrological scenarios.

OSeMOSYS-TEMBA model The OSeMOSYS-TEMBA model (59), (2, 36) is an energy

system model for long-term planning in continental Africa, i.e., Cape Verde, Comoros, Mada-

gascar, Sao Tome and Principe, and Seychelles are not considered. It is developed using the

OSeMOSYS (Open Source energy MOdelling SYStem) framework (60). It is an optimization

model that finds the least-cost capacity expansion and associated generation needed to satisfy

given trajectories of energy demands for 47 countries over time by solving a linear program-

ming problem assuming cooperative centralized decision-making, i.e., minimizing costs at the

continental level. The plan determines the investment in new capacity, new transmission lines,



and the activity for each considered technology.

The data and the model are publicly available online (61). The data include: (i) projections of

final energy demands for each country based on population data (62), energy balances (63, 64)

and Gross Domestic Product (GDP) projections (65); (ii) fossil fuel reserves and renewable

energy potential, combined from different sources (66–71); (iii) the installed capacity and cool-

ing system technology in place in each country derived from the Global Platts database (72);

(iv) projections of techno-economic parameters (such as variable, fixed and capital costs) of

the power generation and conversion technologies, based on different sources (69, 73–75); (v)

water factors for the different technologies and fuel processes (76). The original OSeMOSYS-

TEMBA model is available with three scenarios reporting assumptions on climate policy and

associated final energy demand: (i) a reference scenario (Refer) where no emissions limit is

imposed (but emission penalties related to carbon taxes already in place are anyway consid-

ered); (ii) a scenario compatible with a 2°C temperature increase (2.0); (iii) a 1.5°C compatible

scenario (1.5). These are obtained by constraining the annual emissions of the African energy

systems to a cap obtained using the MAGICC 6 model (77) and information from the JRC

GECO report (65). For the climate policy scenarios (ii) and (iii), also final energy demands are

reduced in the OSeMOSYS-TEMBA model, with electricity consumption reduced by 11% and

27% and fossil fuel consumption reduced by 39% and 71% in scenarios 2.0 and 1.5, respec-

tively (2). The renewable energy potential and the capacity factors associated with renewable

power plants do not consider the impact of climate change.

SSP-driven final energy demands The Shared Socioeconomic Pathways (35) are a set of

five plausible socioeconomic narratives used to project into the future - up to 2500 (78) - pop-

ulation, economy, social and energy trends in the different regions of the world. Each of these

narratives corresponds to a set of specific assumptions on technological growth, economic re-



lationships between the countries, and challenges to climate mitigation and adaptation. The

dataset is publicly available online and it consists of several components: (i) projections of ba-

sic components such as GDP and the population at the country level; (ii) projections of key

variables for energy, technology, economic, population, land cover, emission, and agricultural

sectors from integrated assessment modeling scenarios at the regional level (five regions are

considered: OECD, Reforming Economies, Middle East and Africa, Asia and Latin America);

(iii) emissions for the different pollutants considered for the Coupled Model Intercomparison

Project 6 (CMIP6) project.

In this work, we are interested in the energy consumption derived from the integrated as-

sessment models run under the different scenarios as they will be used to describe uncertainty

in future final energy demands. This step provides final energy demands scenarios that are co-

herent at the energy system level. We consider the scenarios which have been considered in

ISIMIP2b (37): SSP1-2.6, SSP4-6.0, and SSP5-8.5. While we rely on data from the baseline

scenario Refer of the TEMBA energy system model for scenarios SSP4-6.0 and SSP5-8.5, we

use final energy demands and emissions cap from the 2.0 scenario to configure the optimization

and simulation of the SSP1-2.6 scenario (Table S1). The SSP-driven final energy demands are

computed by combining the OSeMOSYS-TEMBA projections, more reliable in the short term,

and the SSP scenarios, which are given more importance in the long term as follows

DSSP,ene
r,t = αtD

TEMBA,ene
r,t + (1− αt)D

SSP,ene
MAF,t

GDP SSP
r,t

GDP SSP
MAF,t

(1)

with αt = α2020 − (t− 2020)/80, α2020 = 1, and α2100 = 0, and where DSSP,ene
r,t is the demand

for energy carrier ene, in scenario SSP , for country r, in year t. The energy carriers considered

in the model are the following: coal, charcoal, biomass, firewood, electricity, heat, gas, crude

oil, heavy fuel oil, and light fuel oil. The demand is computed as a convex combination of the

OSeMOSYS-TEMBA original demand (DTEMBA,ene
r,t ) and the SSP projection at the regional



level (DSSP,ene
MAF,t , MAF stays for Middle East and Africa) downscaled using the GDP of the

country as a proxy variable. After downscaling, the data from the SSP scenarios, which are

obtained with 10-year time steps are interpolated to produce final energy demand trajectories at

the annual time step to match the resolution of OSeMOSYS-TEMBA model data.

African Hydropower Atlas The African Hydropower Atlas (16) is a dataset collecting in-

formation on existing and future hydropower projects in Africa. Its main purpose is to provide

information and data to improve hydropower representation in power and energy system mod-

els in order to better assess the role of hydropower in the energy transition. It supports the

quantification of the ability of hydropower to balance variable renewable energy sources by

providing seasonal availability curves under normal, wet, and dry scenarios. It is the largest

publicly available dataset collecting information on the hydropower sector in Africa and it de-

scribes both storage and run of the river power plants: 266 existing, 60 committed, 44 planned,

and 263 candidate projects for a total of 633 hydropower plants. Here, we group the commit-

ted, planned, and candidate projects and we refer to them as proposed hydropower projects. It

combines technical information such as the power plant’s nominal capacity, the reservoir vol-

ume, and the geographical location, as well as some crucial information such as inflow to the

reservoirs, and an estimation of the monthly capacity factor. The capacity factor is a parameter

often used in power and energy system modeling to describe the power output of hydroelec-

tric power plants as a ratio of their nominal capacity. In the African Hydropower Atlas, this

parameter is estimated for every month of the year using a hydrological model (SWAT+) sim-

ulated with meteorological data over the time period 1980-2016. Additionally, projections of

the capacity factors are available for all the hydropower projects for the three ISIMIP2b sce-

narios, over the period 2020-2050 using as input meteorological variables of interest derived

from bias-adjusted projections of four global climate models (GFDL-ESM2M, HadGEM2-ES,



ISPL-CM5A-LR, and MIROC5) forced with the concentration described in the Representative

Concentration Pathways (RCPs) associated to each of the SSP scenarios part of the ISIMIP2b

project (79,80). The capacity factors are based on inflow profiles for each month under normal,

wet, and dry conditions. Normal capacity factors are derived as monthly median, while wet

and dry are obtained by multiplying the monthly median profiles by the ratio of 5th and 95th

percentile of annual generation to multi-annual average generation. The difference in quan-

tiles between control and projection are averaged across the ensemble of global climate models

and applied to the SWAT+ model forced with EWEMBI. The percentiles are derived from the

distribution of annual average generation which is obtained via simulation of the SWAT+ hy-

drological model forced by the bias-adjusted projections for the four global climate models

considered. In order to consider the ability of reservoir hydropower to dispatch power flexibly

over the year, the inflow profile is divided into a storable and a non-storable component. The

storable component is equal to the live storage (assumed to be 70% of total reservoir volume)

and can be turbined all over the year, while the remaining is non-storable and is assumed to be

directly turbined (16).

Hydropower representation in the OSeMOSYS-TEMBA-AHA energy system model In

the OSeMOSYS-TEMBA model, hydropower is described by aggregating all hydropower plants

at the country level with a common capacity factor for each of the three technologies consid-

ered (micro-hydro, run-of-the-river, reservoir). To improve the level of detail, we substitute the

run-of-the-river and reservoir plants in each country with the existing and future hydropower

projects reported in the African Hydropower Atlas. We update the installed capacity of country-

level aggregate hydropower to consider potential mismatches when hydropower capacity is

larger than the sum of projects reported in the African Hydropower Atlas for a specific country.

We also ensure that no new hydropower can be built, except for the candidate, planned, and



committed power plants in the African Hydropower Atlas. To enforce the constraint that the

full nominal capacity of a hydropower project has to be built at once, the optimization prob-

lem needs to be formulated as a mixed integer linear program. Indeed, the decision variable

of whether to build or not a new hydropower plant is a binary variable for each year. Further

details on these are given in the Supplementary Material. Depending on the considered SSP

and hydrological scenarios, capacity factors from the African Hydropower Atlas are used for

the specific hydropower projects, aggregated from monthly to seasonal time-step to match the

time resolution of OSeMOSYS-TEMBA. The capacity factor is assumed to remain constant

across the day and night time slices of the energy system model, i.e., hydropower is only used

for seasonal balancing, not for diurnal-scale balancing of VRE, especially solar PV. For the

remaining aggregate hydropower OSeMOSYS-TEMBA, less than 5% of existing capacity and

not contributing to new capacity, capacity factors are left unchanged. When information about

the capacity factors for a specific power plant is not available in the African Hydropower At-

las, these are set to be equal to the ones associated with hydropower in that specific country

in the OSeMOSYS-TEMBA model. Since no specific information is available in the African

Hydropower Atlas, hydropower projects’ capital costs are based on the most recent data (40).

With respect to capital costs we take the average capital cost for small (i.e. below 10 MW) and

large (i.e. above 10 MW) hydropower projects in Africa from (40). We then assign (i) the av-

erage capital cost between small and large hydropower projects to the capacity of 10 MW (i.e.

2836.5 USD/kW); (ii) the average capital cost for small hydropower projects to the capacity of

1 MW (i.e. 3256 USD/kW); (iii) the average capital cost for large hydropower projects to the

capacity of 500 MW (i.e. 2446 USD/kW); (iv) we set two additional points by assuming the

capital cost of 0.1 MW and 11 GW plants to be 3744.4 USD/kW and 2054.5 USD/kW, respec-

tively. Between the points defined above, we adopt linear interpolation. Out of these points, we

adopt the same linear function used in the preceding interval. It should also be noted that hy-



dropower projects in the African Hydropower Atlas have a capacity in the range between 0.09

MW and 11050 MW. Such representation of capital cost is not only useful to represent more

realistic information on hydropower construction costs. It also ensures a reduction of symmetry

in the mixed integer linear problem. When the effect of many alternative decisions is similar,

the solver’s ability to find a gradient among the alternative decisions is slowed down impacting

computational time (81).

Most of the remaining hydropower parameters are left unchanged with respect to traditional

hydropower in OSeMOSYS-TEMBA since additional information is not available.

Hydrological scenarios In order to represent different risk preferences with respect to the

uncertainty associated with climate variability, we develop two hydrological scenarios for each

considered SSP scenario. In the MED scenarios, the capacity factors from the median year are

used in the energy system model over the whole horizon for all the hydroelectric power plants

individually modeled. This scenario represents a neutral risk aversion and it is a traditional

approach in water-energy system modeling. In the DRY scenarios, the hydroelectric power

plants’ capacity factors of the energy system model are updated with the ones from the very

dry conditions from the African Hydropower Atlas. With the aim of modeling a risk-averse

decision-maker, we use these capacity factors for every year considered over the horizon, con-

sistently with a robust optimization approach focused on optimizing with respect to the worst

case. In this case, the decision-maker is focusing on averting the consequences of a very dry

year (representative of a 1 in a 20 years event) and in the absence of any information about the

spatial correlation of droughts in the continent.

Estimating power demand deficit and costs for the robust capacity expansion plan To

estimate the maximum annual power demand deficit associated with the capacity expansion

designed under median hydrology, we constrain the new capacity to be installed in the model



to be equal to the one derived from the optimization under median hydrology. We optimize the

generation from each source for each scenario under the very dry hydrology and we consider

as generation deficit the demand satisfied by the backstop technology. Since we don’t know

when the very dry year might occur, we simply use the maximum annual deficit as a percentage

of demand in each year as a risk metric. Conversely, when assessing the costs of the robust

capacity expansion plan we constrain the capacity to the one found via optimization under very

dry hydrology. Consequently, we let the generation of each technology be optimized under

median hydrology and we compute the associated costs that can now be compared with the

ones of the capacity expansion under median hydrology.



Supplementary Text

OSeMOSYS-TEMBA nomenclature

Below tables are provided reporting the nomenclature adopted in the equations of the OSeMOSYS-

TEMBA model.

Symbol Set
r country E
t technology T
f fuel F
m mode of operation M
y year Y (initial year y0 and terminal time yend)
l time-slice L
e emission E

Symbol Variable
AFC Annual Fixed Cost
AV C Annual Variable Cost
ACC Annual Capital Cost
DSV Discounted Salvage Value
DTEP Discounted Technology Emissions Penalty
NC New Capacity
ROA Rate of Activity
SV Salvage Value



Symbol Parameter
ρ Discount Rate

FC Fixed Cost
OL Operational Life
RC Residual Capacity
V C Variable Cost
Y S Year Split
CC Capital Cost
CF Capacity Factor

CTAU Capacity to Activity unit
AF Availability Factor
OAR Output Activity Ratio
SAD Specified Annual Demand
SDP Specified Demand Profile
IAR Input Activity Ratio
AAD Accumulated Annual Demand

TAMaC Total Annual Max Capacity
TAMiC Total Annual Min Capacity
TTAAUL Total Technology Annual Activity Upper Limit
TTAALL Total Technology Annual Activity Lower Limit

TTMPAUL Total Technology Model Period Activity Upper Limit
TTMPALL Total Technology Model Period Activity Lower Limit

EAR Emission Activity Ratio
EP Emissions Penalty
AEE Annual Exogenous Emission
AEL Annual Emission Limit

MPEL Model Period Emission Limit

The optional variables and parameters used to include the African Hydropower Atlas in the

OSeMOSYS-TEMBA model, and for the robust scenario analysis, are listed here.

Symbol Description
COTU Capacity of One Technology Unit (parameter)
NNTU Number of New Technology Units (integer variable)



OSeMOSYS-TEMBA model equations

OSeMOSYS-TEMBA defines a cost minimization problem formulated as a linear program

whose objective function is the sum of various annual components of cost summed over time,

the considered technologies, and regions. The cost minimization problem can be written as

min
u

∑
r,t,y

(
AFCr,t,y + AV Cr,t,y

(1 + ρ)(y−y0+0.5)
+

ACCr,t,y

(1 + ρ)(y−y0)
−DSVr,t,y +DTEPr,t,y

)
(2)

s.t. AFCr,t,y = FCr,t,y ·

(∑
yy≤y

(
NCr,t,yy [y − yy < OLr,t]

)
+RCr,t,y

)
(3)

AV Cr,t,y =
∑
m

∑
l

V Cr,t,m,y ·ROAr,l,t,m,y · Y Sl,y (4)

ACCr,t,y = CCr,t,y ·NCr,t,y (5)

DSVr,t,y =
SVr,t,y

(1 + ρ)yend−y0
(6)

SVr,t,y =

0, y +OLr,t − 1 ≤ yend

CCr,t,y ·NCr,t,y · (1+ρ)(y
end−y)

(1+ρ)(OLr,t−1)
, else

(7)

DTEPr,t,y =
∑
e

∑
l

∑
m

1

(1 + ρ)(y−y0+0.5)
· EARr,t,e,m,y ·ROAr,l,t,m,y · Y Sl,y · EPr,e,y

(8)

where the sets, variables, and parameters are reported in the nomenclature. The total cost is

minimized with respect to the decision variables u = {NCr,t,y, ROAr,l,t,m,y}. These are the

new capacity NCr,t,y to be installed in year y for technology t in the region r and the rate

of activity ROAr,l,t,m,y in time-slice l (i.e., time step associated with season and day night

conditions) during the year y for technology t in the region r with the mode of operation m

(for technologies that operate in multiple directions such as transmission lines, pumped-storage

hydro). The new capacity of all technologies also considers the expansion of transmission lines,

extraction, and refining processes, in addition to generation capacity for all the power sources

considered. As reported in (2), the total costs consist of annual fixed costs, described in (3),



and annual variable costs, described in (4), discounted at mid-year as these costs occur over the

entire year; additionally we have also annual capital costs, discounted at the beginning of each

year and described in (5), discounted salvage value, described by (6) and (7), and discounted

emissions penalty by technology, whose computation is described in (8).

Additional constraints are imposed so that generation from each technology is constrained by

the installed capacity of the technology in a specific year, its capacity factor, and its availability

factor, that take into account for planned maintenance of technologies. This is described in (9)

and (10). For what concerns the fixed costs in (3), we used the Iverson notation to sum the new

capacities installed in year yy, if the associated operational life is not already finished in year y.∑
m

ROAr,l,t,m,y ≤(∑
yy≤y

(
NCr,t,yy [y − yy < OLr,t]

)
+RCr,t,y

)
· CFr,t,l,y · CTAUr,t

(9)

∑
m

∑
l

ROAr,l,t,m,y · Y Sl,y ≤

∑
l

(∑
yy≤y

(
NCr,t,yy [y − yy < OLr,t]

)
+RCr,t,y

)
· CFr,t,l,y · AFr,t,y · CTAUr,t

(10)

Energy balances are formulated at the time-slice level in (11) and at the annual level (12). In

their simplest terms, these equations ensure that enough energy is generated to meet demand

from other technologies and pre-specified final energy demands, defined at the annual or time-

slice level.∑
m

∑
t

ROAr,l,t,m,y ·OARr,t,f,m,y · Y Sl,y ≥

SADr,f,y · SDPr,f,l,y +
∑
m

∑
t

ROAr,l,t,m,y · IARr,t,f,m,y · Y Sl,y

(11)

∑
m

∑
t

∑
l

ROAr,l,t,m,y ·OARr,t,f,m,y · Y Sl,y ≥∑
m

∑
t

∑
l

ROAr,l,t,m,y · IARr,t,f,m,y · Y Sl,y + AADr,f,y

(12)



The constraints (13)-(16) ensure that the capacity and the newly installed capacity remain be-

tween predefined minimum and maximum capacity and capacity investment.

∑
yy≤y

(
NCr,t,yy [y − yy < OLr,t]

)
+RCr,t,y ≤ TAMaCr,t,y (13)∑

yy≤y

(
NCr,t,yy [y − yy < OLr,t]

)
+RCr,t,y ≥ TAMiCr,t,y (14)

NCr,t,y ≤ TAMaCIr,t,y (15)

NCr,t,y ≥ TAMiCIr,t,y (16)

Annual and whole horizon (or model period) activity limits are enforced for each technology in

the constraints (17)-(20).

∑
l

ROAr,l,t,m,y · Y Sl,y ≤ TTAAULr,t,y (17)∑
l

ROAr,l,t,m,y · Y Sl,y ≥ TTAALLr,t,y (18)∑
y

∑
l

ROAr,l,t,m,y · Y Sl,y ≤ TTMPAULr,t,y (19)∑
y

∑
l

ROAr,l,t,m,y · Y Sl,y ≥ TTMPALLr,t,y (20)

The annual and model period emission limits are expressed in constraints (21) and (22).

∑
l

∑
m

∑
t

EARr,t,e,m,y ·ROAr,l,t,m,y · Y Sl,y + AEEr,e,y ≤ AELr,e,y (21)∑
l

∑
m

∑
t

∑
y

EARr,t,e,m,y ·ROAr,l,t,m,y · Y Sl,y + AEEr,e,y ≤ MPELr,e,y (22)



Additional constraints to include data from the African Hydropower Atlas
in OSeMOSYS-TEMBA

To ensure that the new capacity built for a specific hydropower project is aligned with the

nominal capacity reported in the African Hydropower Atlas, we adopt a set of built-in variables,

parameters, and constraints available in the standard OSeMOSYS model framework. We use

the optional variable NNTUr,t,y, defining how many new units of technology t are built in

year y in the region r, the optional parameter COTUr,t,y, describing the minimum amount of

capacity that has to be added when building technology t in year y in the region r, and we add

the additional constraint that relates these to the decision variable NCr,t,y using (23).

COTUr,t,y ·NNTUr,t,y = NCr,t,y (23)

It should be noted that the variable NNTUr,t,y is defined as an integer variable and constrained

to be 0 or 1, as building one technology unit for the hydropower project examined would result

in its realization. Furthermore, the parameter TAMaC, set equal to the hydropower plant nom-

inal capacity for each hydropower project, ensures that the project is built only once during the

model period considered. As a result, the optimization problem is a mixed-integer linear pro-

gram, whose computational complexity is notoriously higher than the one of a linear program.
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Supplementary Figures

African Hydropower Atlas

Energy system evolution:
Capacity 

Generation 

dataset modelscenarios outputs

OSeMOSYS-TEMBA-AHA

OSeMOSYS-TEMBA 
African energy system model

Hydropower disaggregation at the plant level
Capacity

Capacity Factors

Legend

Hydropower sector: 
Sequencing of new projects

Trade-off Metrics: 
Costs 

Generation deficit

SSP database

Future hydrology & land-use (2020-2050):

SSP1-2.6 Capacity Factors (median & dry)
SSP4-6.0 Capacity Factors (median & dry)
SSP5-8.5 Capacity Factors (median & dry)

Socio-economic and climate policy scenario:

SSP1-2.6 Final Energy Demands
SSP4-6.0 Final Energy Demands
SSP5-8.5 Final Energy Demands

Fig. S1. Methodology. The OSeMOSYS-TEMBA model is updated with final energy demands
derived from the SSP database and hydropower plant information from the African Hydropower
Atlas to develop the OSeMOSYS-TEMBA-AHA model. A set of scenarios coherently ex-
ploring socioeconomic projections, agricultural expansion, climate change, and hydrological
variability is used to examine the development of the hydropower sector disaggregated into in-
dividual existing and future power plants. The outputs of the model are trajectories of capacity
and generation over time, including sequencing of hydropower projects. The capacity expan-
sion plans are compared based on their costs and ability to meet the final electricity and energy
demand.
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Fig. S2. Hydropower expansion under control and projection scenarios for hydrology and land-
use. New installed hydropower capacity is reported for each decade and in total along the
columns with rows corresponding to the considered SSP scenarios. For the total column, we
report the difference in installed hydropower capacity between control and projection scenarios.
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a planning horizon until 2070.
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Fig. S4. Total capacity installed at the continental level under the different considered scenarios.
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Fig. S5. Total generation at the continental level under the different considered scenarios.



0.2

0.0

0.2

0.4

MED

SSP1-2.6 SSP4-6.0 SSP5-8.5

0.2

0.0

0.2

0.4

DRY Ca
pa

cit
y-

we
ig

ht
ed

 p
ow

er
 o

ut
pu

t d
iff

er
en

ce
 [-

]

Oil
Gas with CCS
Gas
Coal with CCS
Coal
Biomass with CCS
Biomass
Nuclear
Geothermal
Wind
Solar CSP
Solar PV
Hydro
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09:00-18:00 time periods across seasons for the year 2050 under the different considered sce-
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Fig. S7. Location of future hydropower projects: in green are reported the projects always
built under all considered scenarios, in red the ones never built, and in blue the uncertain.
The size of each marker increases with the capacity of the considered hydropower project.
The river network is derived from the HydroRIVERS dataset, publicly available online at
https://www.hydrosheds.org/products/hydrorivers (82).



Fig. S8. Maximum annual generation deficit observed under dry hydrology and absence of
power trade for the capacity expansion plans designed under median and dry hydrology. Many
countries remain at risk of substantial generation deficit if power trade is not guaranteed, espe-
cially in Sub-Saharan Africa.



Supplementary Tables

SSP scenario TEMBA Energy Demand TEMBA Emission Cap
SSP1-2.6 2.0 2.0
SSP4-6.0 Refer Refer
SSP5-8.5 Refer Refer

Table S1. SSP scenarios considered and their mapping to OSeMOSYS-TEMBA model config-
urations


