Dimethyl Ether (DME) is an oxygenated fuel that could favour the transition of the heavy-duty transportation sector to carbon neutrality thanks to its similarities in terms of thermophysical properties with diesel fuel, which will facilitate the retrofitting of existing architectures, and the possibility to achieve good trade-offs between NOx emissions, soot formation and overall combustion efficiency. The possibility of producing it from a multitude of carbon-neutral sources and the low hydrogen-to-carbon ratio would allow for an overall lower CO2 output, making an attractive option in limiting the global warming impact of the heavy-duty transportation sector. In the present work, a numerical analysis of the combustion process of DME is carried out. First, the numerical setup is validated against experimental data available for a constant volume vessel with an initial density of 14.8 kg/m3, discussing the capabilities of a chemistry-based combustion model using tabulated kinetics of homogeneous reactors: the Tabulated Well Mixed (TWM) model. Ignition delay times (IDT) are compared for a wide range of temperatures, from 750 K to 1100 K, and oxygen concentrations, from 15% to 21%. The same setup is then applied in the simulation of a heavy-duty internal combustion engine (ICE). A first validation was done to assess the performance of the numerical methodology in a traditional Mixing Controlled Compression Ignition (MCCI) scenario. Then, two other points were simulated: an MCCI condition with 35% of EGR and a Late-Premixed Charge Compression Ignition (L-PCCI) one, with 35% of EGR and an SOIe of 4 CAD aTDC. Local temperature distributions were compared, analyzing the effect of these technologies in NOx emission mitigation and their impact on gross indicated efficiency (& eta;g), showing the advantages that using DME can have on a real-world application.

Numerical investigation on the use of Dimethyl Ether (DME) as an alternative fuel for compression-ignition engines

Schirru, Andrea;Lucchini, Tommaso;D'Errico, Gianluca;Mehl, Marco;
2023-01-01

Abstract

Dimethyl Ether (DME) is an oxygenated fuel that could favour the transition of the heavy-duty transportation sector to carbon neutrality thanks to its similarities in terms of thermophysical properties with diesel fuel, which will facilitate the retrofitting of existing architectures, and the possibility to achieve good trade-offs between NOx emissions, soot formation and overall combustion efficiency. The possibility of producing it from a multitude of carbon-neutral sources and the low hydrogen-to-carbon ratio would allow for an overall lower CO2 output, making an attractive option in limiting the global warming impact of the heavy-duty transportation sector. In the present work, a numerical analysis of the combustion process of DME is carried out. First, the numerical setup is validated against experimental data available for a constant volume vessel with an initial density of 14.8 kg/m3, discussing the capabilities of a chemistry-based combustion model using tabulated kinetics of homogeneous reactors: the Tabulated Well Mixed (TWM) model. Ignition delay times (IDT) are compared for a wide range of temperatures, from 750 K to 1100 K, and oxygen concentrations, from 15% to 21%. The same setup is then applied in the simulation of a heavy-duty internal combustion engine (ICE). A first validation was done to assess the performance of the numerical methodology in a traditional Mixing Controlled Compression Ignition (MCCI) scenario. Then, two other points were simulated: an MCCI condition with 35% of EGR and a Late-Premixed Charge Compression Ignition (L-PCCI) one, with 35% of EGR and an SOIe of 4 CAD aTDC. Local temperature distributions were compared, analyzing the effect of these technologies in NOx emission mitigation and their impact on gross indicated efficiency (& eta;g), showing the advantages that using DME can have on a real-world application.
2023
Dimethyl Ether
Computational Fluid Dynamics
Compression-Ignition Engine
Premixed-Charge Compression-Ignition
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0016236123020483-main.pdf

accesso aperto

Descrizione: articolo principale
: Publisher’s version
Dimensione 5.51 MB
Formato Adobe PDF
5.51 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1259220
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 0
social impact