The objective of the present study was to develop a dynamic model to simulate a prototype falling-film evap-orator that is part of a single-bed adsorption chiller test bench located at the Department of Energy of the Politecnico di Milano. The model is based on the evaporator energy and mass balances and was calibrated and validated using experimental data coming from realistic operating conditions in a range of inlet chilled water temperatures (Tin,chw) from 15 to 25 °C. From the experimental data, it was obtained that the average overall heat transfer conductance (UA) was approximately 530 W/K for all temperatures during the quasi steady-state section of the process. A correlation to calculate the wetted surface through a variable called wettability factor (fwet) was developed from experimental data. The fwet factors were identified using the model and were in the range of 0.80 - 0.20 (Tin,chw= 15 °C) and 0.60 - 0.20 (Tin,chw= 25 °C). It was seen that, the higher the Tin,chw, the lower the fwet values. The UA and saturation temperature (Tref,sat) values from the model were in good accordance with experimental data during the quasi steady-state section of the process. Nevertheless, the final transition stage (i. e., a situation in which the evaporator's refrigerant pool is empty) required an additional hypothesis due to the uncertain process' dynamics. The mass and energy balances that are part of the hydrodynamics and heat transfer sections of the model use Nusselt's classic theory for falling-film.

Modelling of a falling-film evaporator for adsorption chillers.

Aprile, M;Di Cicco, AJ;Toppi, T;Freni, A;Motta, M
2023-01-01

Abstract

The objective of the present study was to develop a dynamic model to simulate a prototype falling-film evap-orator that is part of a single-bed adsorption chiller test bench located at the Department of Energy of the Politecnico di Milano. The model is based on the evaporator energy and mass balances and was calibrated and validated using experimental data coming from realistic operating conditions in a range of inlet chilled water temperatures (Tin,chw) from 15 to 25 °C. From the experimental data, it was obtained that the average overall heat transfer conductance (UA) was approximately 530 W/K for all temperatures during the quasi steady-state section of the process. A correlation to calculate the wetted surface through a variable called wettability factor (fwet) was developed from experimental data. The fwet factors were identified using the model and were in the range of 0.80 - 0.20 (Tin,chw= 15 °C) and 0.60 - 0.20 (Tin,chw= 25 °C). It was seen that, the higher the Tin,chw, the lower the fwet values. The UA and saturation temperature (Tref,sat) values from the model were in good accordance with experimental data during the quasi steady-state section of the process. Nevertheless, the final transition stage (i. e., a situation in which the evaporator's refrigerant pool is empty) required an additional hypothesis due to the uncertain process' dynamics. The mass and energy balances that are part of the hydrodynamics and heat transfer sections of the model use Nusselt's classic theory for falling-film.
2023
Adsorption chiller
Film evaporation
Solar cooling
File in questo prodotto:
File Dimensione Formato  
Aprile-2022-Modelling of a falling-film evaporator for adsorption chillers.pdf

accesso aperto

: Pre-Print (o Pre-Refereeing)
Dimensione 1.44 MB
Formato Adobe PDF
1.44 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1259090
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact